summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/sound/ym2413.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/emu/sound/ym2413.c')
-rw-r--r--src/emu/sound/ym2413.c2122
1 files changed, 2122 insertions, 0 deletions
diff --git a/src/emu/sound/ym2413.c b/src/emu/sound/ym2413.c
new file mode 100644
index 00000000000..f4d65b2263a
--- /dev/null
+++ b/src/emu/sound/ym2413.c
@@ -0,0 +1,2122 @@
+/*
+**
+** File: ym2413.c - software implementation of YM2413
+** FM sound generator type OPLL
+**
+** Copyright (C) 2002 Jarek Burczynski
+**
+** Version 1.0
+**
+
+
+to do:
+
+- make sure of the sinus amplitude bits
+
+- make sure of the EG resolution bits (looks like the biggest
+ modulation index generated by the modulator is 123, 124 = no modulation)
+- find proper algorithm for attack phase of EG
+
+- tune up instruments ROM
+
+- support sample replay in test mode (it is NOT as simple as setting bit 0
+ in register 0x0f and using register 0x10 for sample data).
+ Which games use this feature ?
+
+
+*/
+
+#include <math.h>
+
+#include "sndintrf.h" /* use M.A.M.E. */
+#include "ym2413.h"
+
+
+
+/* output final shift */
+#if (SAMPLE_BITS==16)
+ #define FINAL_SH (0)
+ #define MAXOUT (+32767)
+ #define MINOUT (-32768)
+#else
+ #define FINAL_SH (8)
+ #define MAXOUT (+127)
+ #define MINOUT (-128)
+#endif
+
+
+#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
+#define EG_SH 16 /* 16.16 fixed point (EG timing) */
+#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
+
+#define FREQ_MASK ((1<<FREQ_SH)-1)
+
+/* envelope output entries */
+#define ENV_BITS 10
+#define ENV_LEN (1<<ENV_BITS)
+#define ENV_STEP (128.0/ENV_LEN)
+
+#define MAX_ATT_INDEX ((1<<(ENV_BITS-2))-1) /*255*/
+#define MIN_ATT_INDEX (0)
+
+/* sinwave entries */
+#define SIN_BITS 10
+#define SIN_LEN (1<<SIN_BITS)
+#define SIN_MASK (SIN_LEN-1)
+
+#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
+
+
+
+/* register number to channel number , slot offset */
+#define SLOT1 0
+#define SLOT2 1
+
+/* Envelope Generator phases */
+
+#define EG_DMP 5
+#define EG_ATT 4
+#define EG_DEC 3
+#define EG_SUS 2
+#define EG_REL 1
+#define EG_OFF 0
+
+
+/* save output as raw 16-bit sample */
+
+//#define SAVE_SAMPLE
+
+#ifdef SAVE_SAMPLE
+INLINE signed int acc_calc(signed int value)
+{
+ if (value>=0)
+ {
+ if (value < 0x0200)
+ return (value & ~0);
+ if (value < 0x0400)
+ return (value & ~1);
+ if (value < 0x0800)
+ return (value & ~3);
+ if (value < 0x1000)
+ return (value & ~7);
+ if (value < 0x2000)
+ return (value & ~15);
+ if (value < 0x4000)
+ return (value & ~31);
+ return (value & ~63);
+ }
+ /*else value < 0*/
+ if (value > -0x0200)
+ return (~abs(value) & ~0);
+ if (value > -0x0400)
+ return (~abs(value) & ~1);
+ if (value > -0x0800)
+ return (~abs(value) & ~3);
+ if (value > -0x1000)
+ return (~abs(value) & ~7);
+ if (value > -0x2000)
+ return (~abs(value) & ~15);
+ if (value > -0x4000)
+ return (~abs(value) & ~31);
+ return (~abs(value) & ~63);
+}
+
+
+static FILE *sample[1];
+ #if 0 /*save to MONO file */
+ #define SAVE_ALL_CHANNELS \
+ { signed int pom = acc_calc(mo); \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ }
+ #else /*save to STEREO file */
+ #define SAVE_ALL_CHANNELS \
+ { signed int pom = mo; \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ pom = ro; \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ }
+ #define SAVE_SEPARATE_CHANNEL(j) \
+ { signed int pom = outchan; \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ pom = chip->instvol_r[j]>>4; \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ }
+ #endif
+#endif
+
+/*#define LOG_CYM_FILE*/
+#ifdef LOG_CYM_FILE
+ FILE * cymfile = NULL;
+#endif
+
+
+
+
+typedef struct{
+ UINT32 ar; /* attack rate: AR<<2 */
+ UINT32 dr; /* decay rate: DR<<2 */
+ UINT32 rr; /* release rate:RR<<2 */
+ UINT8 KSR; /* key scale rate */
+ UINT8 ksl; /* keyscale level */
+ UINT8 ksr; /* key scale rate: kcode>>KSR */
+ UINT8 mul; /* multiple: mul_tab[ML] */
+
+ /* Phase Generator */
+ UINT32 phase; /* frequency counter */
+ UINT32 freq; /* frequency counter step */
+ UINT8 fb_shift; /* feedback shift value */
+ INT32 op1_out[2]; /* slot1 output for feedback */
+
+ /* Envelope Generator */
+ UINT8 eg_type; /* percussive/nonpercussive mode*/
+ UINT8 state; /* phase type */
+ UINT32 TL; /* total level: TL << 2 */
+ INT32 TLL; /* adjusted now TL */
+ INT32 volume; /* envelope counter */
+ UINT32 sl; /* sustain level: sl_tab[SL] */
+
+ UINT8 eg_sh_dp; /* (dump state) */
+ UINT8 eg_sel_dp; /* (dump state) */
+ UINT8 eg_sh_ar; /* (attack state) */
+ UINT8 eg_sel_ar; /* (attack state) */
+ UINT8 eg_sh_dr; /* (decay state) */
+ UINT8 eg_sel_dr; /* (decay state) */
+ UINT8 eg_sh_rr; /* (release state for non-perc.)*/
+ UINT8 eg_sel_rr; /* (release state for non-perc.)*/
+ UINT8 eg_sh_rs; /* (release state for perc.mode)*/
+ UINT8 eg_sel_rs; /* (release state for perc.mode)*/
+
+ UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
+
+ /* LFO */
+ UINT32 AMmask; /* LFO Amplitude Modulation enable mask */
+ UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/
+
+ /* waveform select */
+ unsigned int wavetable;
+} OPLL_SLOT;
+
+typedef struct{
+ OPLL_SLOT SLOT[2];
+ /* phase generator state */
+ UINT32 block_fnum; /* block+fnum */
+ UINT32 fc; /* Freq. freqement base */
+ UINT32 ksl_base; /* KeyScaleLevel Base step */
+ UINT8 kcode; /* key code (for key scaling) */
+ UINT8 sus; /* sus on/off (release speed in percussive mode)*/
+} OPLL_CH;
+
+/* chip state */
+typedef struct {
+ OPLL_CH P_CH[9]; /* OPLL chips have 9 channels*/
+ UINT8 instvol_r[9]; /* instrument/volume (or volume/volume in percussive mode)*/
+
+ UINT32 eg_cnt; /* global envelope generator counter */
+ UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
+ UINT32 eg_timer_add; /* step of eg_timer */
+ UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
+
+ UINT8 rhythm; /* Rhythm mode */
+
+ /* LFO */
+ UINT32 lfo_am_cnt;
+ UINT32 lfo_am_inc;
+ UINT32 lfo_pm_cnt;
+ UINT32 lfo_pm_inc;
+
+ UINT32 noise_rng; /* 23 bit noise shift register */
+ UINT32 noise_p; /* current noise 'phase' */
+ UINT32 noise_f; /* current noise period */
+
+
+/* instrument settings */
+/*
+ 0-user instrument
+ 1-15 - fixed instruments
+ 16 -bass drum settings
+ 17,18 - other percussion instruments
+*/
+ UINT8 inst_tab[19][8];
+
+ /* external event callback handlers */
+ OPLL_UPDATEHANDLER UpdateHandler; /* stream update handler */
+ void * UpdateParam; /* stream update parameter */
+
+ UINT32 fn_tab[1024]; /* fnumber->increment counter */
+
+ UINT8 address; /* address register */
+ UINT8 status; /* status flag */
+
+ int clock; /* master clock (Hz) */
+ int rate; /* sampling rate (Hz) */
+ double freqbase; /* frequency base */
+} YM2413;
+
+/* key scale level */
+/* table is 3dB/octave, DV converts this into 6dB/octave */
+/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
+#define DV (0.1875/1.0)
+static const UINT32 ksl_tab[8*16]=
+{
+ /* OCT 0 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ /* OCT 1 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
+ 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
+ /* OCT 2 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
+ 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
+ 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
+ /* OCT 3 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
+ 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
+ 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
+ 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
+ /* OCT 4 */
+ 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
+ 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
+ 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
+ 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
+ /* OCT 5 */
+ 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
+ 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
+ 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
+ 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
+ /* OCT 6 */
+ 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
+ 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
+ 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
+ 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
+ /* OCT 7 */
+ 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
+ 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
+ 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
+ 19.875/DV,20.250/DV,20.625/DV,21.000/DV
+};
+#undef DV
+
+/* sustain level table (3dB per step) */
+/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,45 (dB)*/
+#define SC(db) (UINT32) ( db * (1.0/ENV_STEP) )
+static const UINT32 sl_tab[16]={
+ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
+ SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(15)
+};
+#undef SC
+
+
+#define RATE_STEPS (8)
+static const unsigned char eg_inc[15*RATE_STEPS]={
+
+/*cycle:0 1 2 3 4 5 6 7*/
+
+/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
+/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
+/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
+/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
+
+/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
+/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
+/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
+/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
+
+/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
+/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
+/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
+/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
+
+/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
+/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
+/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
+};
+
+
+#define O(a) (a*RATE_STEPS)
+
+/*note that there is no O(13) in this table - it's directly in the code */
+static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
+/* 16 infinite time rates */
+O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
+O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
+
+/* rates 00-12 */
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+
+/* rate 13 */
+O( 4),O( 5),O( 6),O( 7),
+
+/* rate 14 */
+O( 8),O( 9),O(10),O(11),
+
+/* rate 15 */
+O(12),O(12),O(12),O(12),
+
+/* 16 dummy rates (same as 15 3) */
+O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
+O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
+
+};
+#undef O
+
+/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
+/*shift 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0 */
+/*mask 8191, 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0 */
+
+#define O(a) (a*1)
+static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
+/* 16 infinite time rates */
+O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
+O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
+
+/* rates 00-12 */
+O(13),O(13),O(13),O(13),
+O(12),O(12),O(12),O(12),
+O(11),O(11),O(11),O(11),
+O(10),O(10),O(10),O(10),
+O( 9),O( 9),O( 9),O( 9),
+O( 8),O( 8),O( 8),O( 8),
+O( 7),O( 7),O( 7),O( 7),
+O( 6),O( 6),O( 6),O( 6),
+O( 5),O( 5),O( 5),O( 5),
+O( 4),O( 4),O( 4),O( 4),
+O( 3),O( 3),O( 3),O( 3),
+O( 2),O( 2),O( 2),O( 2),
+O( 1),O( 1),O( 1),O( 1),
+
+/* rate 13 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 14 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 15 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* 16 dummy rates (same as 15 3) */
+O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
+O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
+
+};
+#undef O
+
+
+/* multiple table */
+#define ML 2
+static const UINT8 mul_tab[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
+ 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
+ 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
+};
+#undef ML
+
+/* TL_TAB_LEN is calculated as:
+* 11 - sinus amplitude bits (Y axis)
+* 2 - sinus sign bit (Y axis)
+* TL_RES_LEN - sinus resolution (X axis)
+*/
+#define TL_TAB_LEN (11*2*TL_RES_LEN)
+static signed int tl_tab[TL_TAB_LEN];
+
+#define ENV_QUIET (TL_TAB_LEN>>5)
+
+/* sin waveform table in 'decibel' scale */
+/* two waveforms on OPLL type chips */
+static unsigned int sin_tab[SIN_LEN * 2];
+
+
+/* LFO Amplitude Modulation table (verified on real YM3812)
+ 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
+
+ Length: 210 elements.
+
+ Each of the elements has to be repeated
+ exactly 64 times (on 64 consecutive samples).
+ The whole table takes: 64 * 210 = 13440 samples.
+
+We use data>>1, until we find what it really is on real chip...
+
+*/
+
+#define LFO_AM_TAB_ELEMENTS 210
+
+static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
+0,0,0,0,0,0,0,
+1,1,1,1,
+2,2,2,2,
+3,3,3,3,
+4,4,4,4,
+5,5,5,5,
+6,6,6,6,
+7,7,7,7,
+8,8,8,8,
+9,9,9,9,
+10,10,10,10,
+11,11,11,11,
+12,12,12,12,
+13,13,13,13,
+14,14,14,14,
+15,15,15,15,
+16,16,16,16,
+17,17,17,17,
+18,18,18,18,
+19,19,19,19,
+20,20,20,20,
+21,21,21,21,
+22,22,22,22,
+23,23,23,23,
+24,24,24,24,
+25,25,25,25,
+26,26,26,
+25,25,25,25,
+24,24,24,24,
+23,23,23,23,
+22,22,22,22,
+21,21,21,21,
+20,20,20,20,
+19,19,19,19,
+18,18,18,18,
+17,17,17,17,
+16,16,16,16,
+15,15,15,15,
+14,14,14,14,
+13,13,13,13,
+12,12,12,12,
+11,11,11,11,
+10,10,10,10,
+9,9,9,9,
+8,8,8,8,
+7,7,7,7,
+6,6,6,6,
+5,5,5,5,
+4,4,4,4,
+3,3,3,3,
+2,2,2,2,
+1,1,1,1
+};
+
+/* LFO Phase Modulation table (verified on real YM2413) */
+static const INT8 lfo_pm_table[8*8] = {
+
+/* FNUM2/FNUM = 0 00xxxxxx (0x0000) */
+0, 0, 0, 0, 0, 0, 0, 0,
+
+/* FNUM2/FNUM = 0 01xxxxxx (0x0040) */
+1, 0, 0, 0,-1, 0, 0, 0,
+
+/* FNUM2/FNUM = 0 10xxxxxx (0x0080) */
+2, 1, 0,-1,-2,-1, 0, 1,
+
+/* FNUM2/FNUM = 0 11xxxxxx (0x00C0) */
+3, 1, 0,-1,-3,-1, 0, 1,
+
+/* FNUM2/FNUM = 1 00xxxxxx (0x0100) */
+4, 2, 0,-2,-4,-2, 0, 2,
+
+/* FNUM2/FNUM = 1 01xxxxxx (0x0140) */
+5, 2, 0,-2,-5,-2, 0, 2,
+
+/* FNUM2/FNUM = 1 10xxxxxx (0x0180) */
+6, 3, 0,-3,-6,-3, 0, 3,
+
+/* FNUM2/FNUM = 1 11xxxxxx (0x01C0) */
+7, 3, 0,-3,-7,-3, 0, 3,
+};
+
+
+
+
+
+
+/* This is not 100% perfect yet but very close */
+/*
+ - multi parameters are 100% correct (instruments and drums)
+ - LFO PM and AM enable are 100% correct
+ - waveform DC and DM select are 100% correct
+*/
+
+static unsigned char table[19][8] = {
+/* MULT MULT modTL DcDmFb AR/DR AR/DR SL/RR SL/RR */
+/* 0 1 2 3 4 5 6 7 */
+ {0x49, 0x4c, 0x4c, 0x12, 0x00, 0x00, 0x00, 0x00 }, //0
+
+ {0x61, 0x61, 0x1e, 0x17, 0xf0, 0x78, 0x00, 0x17 }, //1
+ {0x13, 0x41, 0x1e, 0x0d, 0xd7, 0xf7, 0x13, 0x13 }, //2
+ {0x13, 0x01, 0x99, 0x04, 0xf2, 0xf4, 0x11, 0x23 }, //3
+ {0x21, 0x61, 0x1b, 0x07, 0xaf, 0x64, 0x40, 0x27 }, //4
+
+//{0x22, 0x21, 0x1e, 0x09, 0xf0, 0x76, 0x08, 0x28 }, //5
+ {0x22, 0x21, 0x1e, 0x06, 0xf0, 0x75, 0x08, 0x18 }, //5
+
+//{0x31, 0x22, 0x16, 0x09, 0x90, 0x7f, 0x00, 0x08 }, //6
+ {0x31, 0x22, 0x16, 0x05, 0x90, 0x71, 0x00, 0x13 }, //6
+
+ {0x21, 0x61, 0x1d, 0x07, 0x82, 0x80, 0x10, 0x17 }, //7
+ {0x23, 0x21, 0x2d, 0x16, 0xc0, 0x70, 0x07, 0x07 }, //8
+ {0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17 }, //9
+
+//{0x61, 0x61, 0x0c, 0x08, 0x85, 0xa0, 0x79, 0x07 }, //A
+ {0x61, 0x61, 0x0c, 0x18, 0x85, 0xf0, 0x70, 0x07 }, //A
+
+ {0x23, 0x01, 0x07, 0x11, 0xf0, 0xa4, 0x00, 0x22 }, //B
+ {0x97, 0xc1, 0x24, 0x07, 0xff, 0xf8, 0x22, 0x12 }, //C
+
+//{0x61, 0x10, 0x0c, 0x08, 0xf2, 0xc4, 0x40, 0xc8 }, //D
+ {0x61, 0x10, 0x0c, 0x05, 0xf2, 0xf4, 0x40, 0x44 }, //D
+
+ {0x01, 0x01, 0x55, 0x03, 0xf3, 0x92, 0xf3, 0xf3 }, //E
+ {0x61, 0x41, 0x89, 0x03, 0xf1, 0xf4, 0xf0, 0x13 }, //F
+
+/* drum instruments definitions */
+/* MULTI MULTI modTL xxx AR/DR AR/DR SL/RR SL/RR */
+/* 0 1 2 3 4 5 6 7 */
+ {0x01, 0x01, 0x16, 0x00, 0xfd, 0xf8, 0x2f, 0x6d },/* BD(multi verified, modTL verified, mod env - verified(close), carr. env verifed) */
+ {0x01, 0x01, 0x00, 0x00, 0xd8, 0xd8, 0xf9, 0xf8 },/* HH(multi verified), SD(multi not used) */
+ {0x05, 0x01, 0x00, 0x00, 0xf8, 0xba, 0x49, 0x55 },/* TOM(multi,env verified), TOP CYM(multi verified, env verified) */
+};
+
+/* lock level of common table */
+static int num_lock = 0;
+
+/* work table */
+static void *cur_chip = NULL; /* current chip pointer */
+static OPLL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
+
+static signed int output[2];
+static signed int outchan;
+
+static UINT32 LFO_AM;
+static INT32 LFO_PM;
+
+
+INLINE int limit( int val, int max, int min ) {
+ if ( val > max )
+ val = max;
+ else if ( val < min )
+ val = min;
+
+ return val;
+}
+
+
+/* advance LFO to next sample */
+INLINE void advance_lfo(YM2413 *chip)
+{
+ /* LFO */
+ chip->lfo_am_cnt += chip->lfo_am_inc;
+ if (chip->lfo_am_cnt >= ((UINT32)LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
+ chip->lfo_am_cnt -= ((UINT32)LFO_AM_TAB_ELEMENTS<<LFO_SH);
+
+ LFO_AM = lfo_am_table[ chip->lfo_am_cnt >> LFO_SH ] >> 1;
+
+ chip->lfo_pm_cnt += chip->lfo_pm_inc;
+ LFO_PM = (chip->lfo_pm_cnt>>LFO_SH) & 7;
+}
+
+/* advance to next sample */
+INLINE void advance(YM2413 *chip)
+{
+ OPLL_CH *CH;
+ OPLL_SLOT *op;
+ unsigned int i;
+
+ /* Envelope Generator */
+ chip->eg_timer += chip->eg_timer_add;
+
+ while (chip->eg_timer >= chip->eg_timer_overflow)
+ {
+ chip->eg_timer -= chip->eg_timer_overflow;
+
+ chip->eg_cnt++;
+
+ for (i=0; i<9*2; i++)
+ {
+ CH = &chip->P_CH[i/2];
+
+ op = &CH->SLOT[i&1];
+
+ switch(op->state)
+ {
+
+ case EG_DMP: /* dump phase */
+ /*dump phase is performed by both operators in each channel*/
+ /*when CARRIER envelope gets down to zero level,
+ ** phases in BOTH opearators are reset (at the same time ?)
+ */
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_dp)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_dp + ((chip->eg_cnt>>op->eg_sh_dp)&7)];
+
+ if ( op->volume >= MAX_ATT_INDEX )
+ {
+ op->volume = MAX_ATT_INDEX;
+ op->state = EG_ATT;
+ /* restart Phase Generator */
+ op->phase = 0;
+ }
+ }
+ break;
+
+ case EG_ATT: /* attack phase */
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
+ {
+ op->volume += (~op->volume *
+ (eg_inc[op->eg_sel_ar + ((chip->eg_cnt>>op->eg_sh_ar)&7)])
+ ) >>2;
+
+ if (op->volume <= MIN_ATT_INDEX)
+ {
+ op->volume = MIN_ATT_INDEX;
+ op->state = EG_DEC;
+ }
+ }
+ break;
+
+ case EG_DEC: /* decay phase */
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_dr + ((chip->eg_cnt>>op->eg_sh_dr)&7)];
+
+ if ( op->volume >= op->sl )
+ op->state = EG_SUS;
+ }
+ break;
+
+ case EG_SUS: /* sustain phase */
+ /* this is important behaviour:
+ one can change percusive/non-percussive modes on the fly and
+ the chip will remain in sustain phase - verified on real YM3812 */
+
+ if(op->eg_type) /* non-percussive mode (sustained tone) */
+ {
+ /* do nothing */
+ }
+ else /* percussive mode */
+ {
+ /* during sustain phase chip adds Release Rate (in percussive mode) */
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)];
+
+ if ( op->volume >= MAX_ATT_INDEX )
+ op->volume = MAX_ATT_INDEX;
+ }
+ /* else do nothing in sustain phase */
+ }
+ break;
+
+ case EG_REL: /* release phase */
+ /* exclude modulators in melody channels from performing anything in this mode*/
+ /* allowed are only carriers in melody mode and rhythm slots in rhythm mode */
+
+ /*This table shows which operators and on what conditions are allowed to perform EG_REL:
+ (a) - always perform EG_REL
+ (n) - never perform EG_REL
+ (r) - perform EG_REL in Rhythm mode ONLY
+ 0: 0 (n), 1 (a)
+ 1: 2 (n), 3 (a)
+ 2: 4 (n), 5 (a)
+ 3: 6 (n), 7 (a)
+ 4: 8 (n), 9 (a)
+ 5: 10(n), 11(a)
+ 6: 12(r), 13(a)
+ 7: 14(r), 15(a)
+ 8: 16(r), 17(a)
+ */
+ if ( (i&1) || ((chip->rhythm&0x20) && (i>=12)) )/* exclude modulators */
+ {
+ if(op->eg_type) /* non-percussive mode (sustained tone) */
+ /*this is correct: use RR when SUS = OFF*/
+ /*and use RS when SUS = ON*/
+ {
+ if (CH->sus)
+ {
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rs + ((chip->eg_cnt>>op->eg_sh_rs)&7)];
+ if ( op->volume >= MAX_ATT_INDEX )
+ {
+ op->volume = MAX_ATT_INDEX;
+ op->state = EG_OFF;
+ }
+ }
+ }
+ else
+ {
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)];
+ if ( op->volume >= MAX_ATT_INDEX )
+ {
+ op->volume = MAX_ATT_INDEX;
+ op->state = EG_OFF;
+ }
+ }
+ }
+ }
+ else /* percussive mode */
+ {
+ if ( !(chip->eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rs + ((chip->eg_cnt>>op->eg_sh_rs)&7)];
+ if ( op->volume >= MAX_ATT_INDEX )
+ {
+ op->volume = MAX_ATT_INDEX;
+ op->state = EG_OFF;
+ }
+ }
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+
+ for (i=0; i<9*2; i++)
+ {
+ CH = &chip->P_CH[i/2];
+ op = &CH->SLOT[i&1];
+
+ /* Phase Generator */
+ if(op->vib)
+ {
+ UINT8 block;
+
+ unsigned int fnum_lfo = 8*((CH->block_fnum&0x01c0) >> 6);
+ unsigned int block_fnum = CH->block_fnum * 2;
+ signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + fnum_lfo ];
+
+ if (lfo_fn_table_index_offset) /* LFO phase modulation active */
+ {
+ block_fnum += lfo_fn_table_index_offset;
+ block = (block_fnum&0x1c00) >> 10;
+ op->phase += (chip->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
+ }
+ else /* LFO phase modulation = zero */
+ {
+ op->phase += op->freq;
+ }
+ }
+ else /* LFO phase modulation disabled for this operator */
+ {
+ op->phase += op->freq;
+ }
+ }
+
+ /* The Noise Generator of the YM3812 is 23-bit shift register.
+ * Period is equal to 2^23-2 samples.
+ * Register works at sampling frequency of the chip, so output
+ * can change on every sample.
+ *
+ * Output of the register and input to the bit 22 is:
+ * bit0 XOR bit14 XOR bit15 XOR bit22
+ *
+ * Simply use bit 22 as the noise output.
+ */
+
+ chip->noise_p += chip->noise_f;
+ i = chip->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
+ chip->noise_p &= FREQ_MASK;
+ while (i)
+ {
+ /*
+ UINT32 j;
+ j = ( (chip->noise_rng) ^ (chip->noise_rng>>14) ^ (chip->noise_rng>>15) ^ (chip->noise_rng>>22) ) & 1;
+ chip->noise_rng = (j<<22) | (chip->noise_rng>>1);
+ */
+
+ /*
+ Instead of doing all the logic operations above, we
+ use a trick here (and use bit 0 as the noise output).
+ The difference is only that the noise bit changes one
+ step ahead. This doesn't matter since we don't know
+ what is real state of the noise_rng after the reset.
+ */
+
+ if (chip->noise_rng & 1) chip->noise_rng ^= 0x800302;
+ chip->noise_rng >>= 1;
+
+ i--;
+ }
+}
+
+
+INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
+{
+ UINT32 p;
+
+ p = (env<<5) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<17))) >> FREQ_SH ) & SIN_MASK) ];
+
+ if (p >= TL_TAB_LEN)
+ return 0;
+ return tl_tab[p];
+}
+
+INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
+{
+ UINT32 p;
+ INT32 i;
+
+ i = (phase & ~FREQ_MASK) + pm;
+
+/*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, phase>>FREQ_SH, pm);*/
+
+ p = (env<<5) + sin_tab[ wave_tab + ((i>>FREQ_SH) & SIN_MASK)];
+
+/*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/
+
+ if (p >= TL_TAB_LEN)
+ return 0;
+ return tl_tab[p];
+}
+
+
+#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask))
+
+/* calculate output */
+INLINE void chan_calc( OPLL_CH *CH )
+{
+ OPLL_SLOT *SLOT;
+ unsigned int env;
+ signed int out;
+ signed int phase_modulation; /* phase modulation input (SLOT 2) */
+
+
+ /* SLOT 1 */
+ SLOT = &CH->SLOT[SLOT1];
+ env = volume_calc(SLOT);
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+ phase_modulation = SLOT->op1_out[0];
+
+ SLOT->op1_out[1] = 0;
+
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->fb_shift)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+
+outchan=0;
+
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ {
+ signed int outp = op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
+ output[0] += outp;
+ outchan = outp;
+ //output[0] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
+ }
+}
+
+/*
+ operators used in the rhythm sounds generation process:
+
+ Envelope Generator:
+
+channel operator register number Bass High Snare Tom Top
+/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
+ 6 / 0 12 50 70 90 f0 +
+ 6 / 1 15 53 73 93 f3 +
+ 7 / 0 13 51 71 91 f1 +
+ 7 / 1 16 54 74 94 f4 +
+ 8 / 0 14 52 72 92 f2 +
+ 8 / 1 17 55 75 95 f5 +
+
+ Phase Generator:
+
+channel operator register number Bass High Snare Tom Top
+/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
+ 6 / 0 12 30 +
+ 6 / 1 15 33 +
+ 7 / 0 13 31 + + +
+ 7 / 1 16 34 ----- n o t u s e d -----
+ 8 / 0 14 32 +
+ 8 / 1 17 35 + +
+
+channel operator register number Bass High Snare Tom Top
+number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
+ 6 12,15 B6 A6 +
+
+ 7 13,16 B7 A7 + + +
+
+ 8 14,17 B8 A8 + + +
+
+*/
+
+/* calculate rhythm */
+
+INLINE void rhythm_calc( OPLL_CH *CH, unsigned int noise )
+{
+ OPLL_SLOT *SLOT;
+ signed int out;
+ unsigned int env;
+ signed int phase_modulation; /* phase modulation input (SLOT 2) */
+
+
+ /* Bass Drum (verified on real YM3812):
+ - depends on the channel 6 'connect' register:
+ when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
+ when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
+ - output sample always is multiplied by 2
+ */
+
+
+ /* SLOT 1 */
+ SLOT = &CH[6].SLOT[SLOT1];
+ env = volume_calc(SLOT);
+
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+
+ phase_modulation = SLOT->op1_out[0];
+
+ SLOT->op1_out[1] = 0;
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->fb_shift)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ output[1] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable) * 2;
+
+
+ /* Phase generation is based on: */
+ // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases)
+ // SD (16) channel 7->slot 1
+ // TOM (14) channel 8->slot 1
+ // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases)
+
+ /* Envelope generation based on: */
+ // HH channel 7->slot1
+ // SD channel 7->slot2
+ // TOM channel 8->slot1
+ // TOP channel 8->slot2
+
+
+ /* The following formulas can be well optimized.
+ I leave them in direct form for now (in case I've missed something).
+ */
+
+ /* High Hat (verified on real YM3812) */
+ env = volume_calc(SLOT7_1);
+ if( env < ENV_QUIET )
+ {
+
+ /* high hat phase generation:
+ phase = d0 or 234 (based on frequency only)
+ phase = 34 or 2d0 (based on noise)
+ */
+
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit7 = ((SLOT7_1->phase>>FREQ_SH)>>7)&1;
+ unsigned char bit3 = ((SLOT7_1->phase>>FREQ_SH)>>3)&1;
+ unsigned char bit2 = ((SLOT7_1->phase>>FREQ_SH)>>2)&1;
+
+ unsigned char res1 = (bit2 ^ bit7) | bit3;
+
+ /* when res1 = 0 phase = 0x000 | 0xd0; */
+ /* when res1 = 1 phase = 0x200 | (0xd0>>2); */
+ UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
+
+ /* enable gate based on frequency of operator 2 in channel 8 */
+ unsigned char bit5e= ((SLOT8_2->phase>>FREQ_SH)>>5)&1;
+ unsigned char bit3e= ((SLOT8_2->phase>>FREQ_SH)>>3)&1;
+
+ unsigned char res2 = (bit3e | bit5e);
+
+ /* when res2 = 0 pass the phase from calculation above (res1); */
+ /* when res2 = 1 phase = 0x200 | (0xd0>>2); */
+ if (res2)
+ phase = (0x200|(0xd0>>2));
+
+
+ /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
+ /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
+ if (phase&0x200)
+ {
+ if (noise)
+ phase = 0x200|0xd0;
+ }
+ else
+ /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
+ /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
+ {
+ if (noise)
+ phase = 0xd0>>2;
+ }
+
+ output[1] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
+ }
+
+ /* Snare Drum (verified on real YM3812) */
+ env = volume_calc(SLOT7_2);
+ if( env < ENV_QUIET )
+ {
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit8 = ((SLOT7_1->phase>>FREQ_SH)>>8)&1;
+
+ /* when bit8 = 0 phase = 0x100; */
+ /* when bit8 = 1 phase = 0x200; */
+ UINT32 phase = bit8 ? 0x200 : 0x100;
+
+ /* Noise bit XOR'es phase by 0x100 */
+ /* when noisebit = 0 pass the phase from calculation above */
+ /* when noisebit = 1 phase ^= 0x100; */
+ /* in other words: phase ^= (noisebit<<8); */
+ if (noise)
+ phase ^= 0x100;
+
+ output[1] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
+ }
+
+ /* Tom Tom (verified on real YM3812) */
+ env = volume_calc(SLOT8_1);
+ if( env < ENV_QUIET )
+ output[1] += op_calc(SLOT8_1->phase, env, 0, SLOT8_1->wavetable) * 2;
+
+ /* Top Cymbal (verified on real YM2413) */
+ env = volume_calc(SLOT8_2);
+ if( env < ENV_QUIET )
+ {
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit7 = ((SLOT7_1->phase>>FREQ_SH)>>7)&1;
+ unsigned char bit3 = ((SLOT7_1->phase>>FREQ_SH)>>3)&1;
+ unsigned char bit2 = ((SLOT7_1->phase>>FREQ_SH)>>2)&1;
+
+ unsigned char res1 = (bit2 ^ bit7) | bit3;
+
+ /* when res1 = 0 phase = 0x000 | 0x100; */
+ /* when res1 = 1 phase = 0x200 | 0x100; */
+ UINT32 phase = res1 ? 0x300 : 0x100;
+
+ /* enable gate based on frequency of operator 2 in channel 8 */
+ unsigned char bit5e= ((SLOT8_2->phase>>FREQ_SH)>>5)&1;
+ unsigned char bit3e= ((SLOT8_2->phase>>FREQ_SH)>>3)&1;
+
+ unsigned char res2 = (bit3e | bit5e);
+ /* when res2 = 0 pass the phase from calculation above (res1); */
+ /* when res2 = 1 phase = 0x200 | 0x100; */
+ if (res2)
+ phase = 0x300;
+
+ output[1] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
+ }
+
+}
+
+
+/* generic table initialize */
+static int init_tables(void)
+{
+ signed int i,x;
+ signed int n;
+ double o,m;
+
+
+ for (x=0; x<TL_RES_LEN; x++)
+ {
+ m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
+ m = floor(m);
+
+ /* we never reach (1<<16) here due to the (x+1) */
+ /* result fits within 16 bits at maximum */
+
+ n = (int)m; /* 16 bits here */
+ n >>= 4; /* 12 bits here */
+ if (n&1) /* round to nearest */
+ n = (n>>1)+1;
+ else
+ n = n>>1;
+ /* 11 bits here (rounded) */
+ tl_tab[ x*2 + 0 ] = n;
+ tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
+
+ for (i=1; i<11; i++)
+ {
+ tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
+ tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
+ }
+ #if 0
+ logerror("tl %04i", x*2);
+ for (i=0; i<11; i++)
+ logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] );
+ logerror("\n");
+ #endif
+ }
+ /*logerror("ym2413.c: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/
+
+
+ for (i=0; i<SIN_LEN; i++)
+ {
+ /* non-standard sinus */
+ m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
+
+ /* we never reach zero here due to ((i*2)+1) */
+
+ if (m>0.0)
+ o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
+ else
+ o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
+
+ o = o / (ENV_STEP/4);
+
+ n = (int)(2.0*o);
+ if (n&1) /* round to nearest */
+ n = (n>>1)+1;
+ else
+ n = n>>1;
+
+ /* waveform 0: standard sinus */
+ sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
+
+ /*logerror("ym2413.c: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/
+
+
+ /* waveform 1: __ __ */
+ /* / \____/ \____*/
+ /* output only first half of the sinus waveform (positive one) */
+ if (i & (1<<(SIN_BITS-1)) )
+ sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
+ else
+ sin_tab[1*SIN_LEN+i] = sin_tab[i];
+
+ /*logerror("ym2413.c: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] );*/
+ }
+#if 0
+ logerror("YM2413.C: ENV_QUIET= %08x (*32=%08x)\n", ENV_QUIET, ENV_QUIET*32 );
+ for (i=0; i<ENV_QUIET; i++)
+ {
+ logerror("tl_tb[%4x(%4i)]=%8x\n", i<<5, i, tl_tab[i<<5] );
+ }
+#endif
+#ifdef SAVE_SAMPLE
+ sample[0]=fopen("sampsum.pcm","wb");
+#endif
+
+ return 1;
+}
+
+static void OPLCloseTable( void )
+{
+#ifdef SAVE_SAMPLE
+ fclose(sample[0]);
+#endif
+}
+
+
+
+static void OPLL_initalize(YM2413 *chip)
+{
+ int i;
+
+ /* frequency base */
+ chip->freqbase = (chip->rate) ? ((double)chip->clock / 72.0) / chip->rate : 0;
+#if 0
+ chip->rate = (double)chip->clock / 72.0;
+ chip->freqbase = 1.0;
+ logerror("freqbase=%f\n", chip->freqbase);
+#endif
+
+
+
+ /* make fnumber -> increment counter table */
+ for( i = 0 ; i < 1024; i++ )
+ {
+ /* OPLL (YM2413) phase increment counter = 18bit */
+
+ chip->fn_tab[i] = (UINT32)( (double)i * 64 * chip->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
+#if 0
+ logerror("ym2413.c: fn_tab[%4i] = %08x (dec=%8i)\n",
+ i, chip->fn_tab[i]>>6, chip->fn_tab[i]>>6 );
+#endif
+ }
+
+#if 0
+ for( i=0 ; i < 16 ; i++ )
+ {
+ logerror("ym2413.c: sl_tab[%i] = %08x\n", i, sl_tab[i] );
+ }
+ for( i=0 ; i < 8 ; i++ )
+ {
+ int j;
+ logerror("ym2413.c: ksl_tab[oct=%2i] =",i);
+ for (j=0; j<16; j++)
+ {
+ logerror("%08x ", ksl_tab[i*16+j] );
+ }
+ logerror("\n");
+ }
+#endif
+
+
+ /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
+ /* One entry from LFO_AM_TABLE lasts for 64 samples */
+ chip->lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * chip->freqbase;
+
+ /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
+ chip->lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * chip->freqbase;
+
+ /*logerror ("chip->lfo_am_inc = %8x ; chip->lfo_pm_inc = %8x\n", chip->lfo_am_inc, chip->lfo_pm_inc);*/
+
+ /* Noise generator: a step takes 1 sample */
+ chip->noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * chip->freqbase;
+ /*logerror("YM2413init noise_f=%8x\n", chip->noise_f);*/
+
+ chip->eg_timer_add = (1<<EG_SH) * chip->freqbase;
+ chip->eg_timer_overflow = ( 1 ) * (1<<EG_SH);
+ /*logerror("YM2413init eg_timer_add=%8x eg_timer_overflow=%8x\n", chip->eg_timer_add, chip->eg_timer_overflow);*/
+
+}
+
+INLINE void KEY_ON(OPLL_SLOT *SLOT, UINT32 key_set)
+{
+ if( !SLOT->key )
+ {
+ /* do NOT restart Phase Generator (verified on real YM2413)*/
+ /* phase -> Dump */
+ SLOT->state = EG_DMP;
+ }
+ SLOT->key |= key_set;
+}
+
+INLINE void KEY_OFF(OPLL_SLOT *SLOT, UINT32 key_clr)
+{
+ if( SLOT->key )
+ {
+ SLOT->key &= key_clr;
+
+ if( !SLOT->key )
+ {
+ /* phase -> Release */
+ if (SLOT->state>EG_REL)
+ SLOT->state = EG_REL;
+ }
+ }
+}
+
+/* update phase increment counter of operator (also update the EG rates if necessary) */
+INLINE void CALC_FCSLOT(OPLL_CH *CH,OPLL_SLOT *SLOT)
+{
+ int ksr;
+ UINT32 SLOT_rs;
+ UINT32 SLOT_dp;
+
+ /* (frequency) phase increment counter */
+ SLOT->freq = CH->fc * SLOT->mul;
+ ksr = CH->kcode >> SLOT->KSR;
+
+ if( SLOT->ksr != ksr )
+ {
+ SLOT->ksr = ksr;
+
+ /* calculate envelope generator rates */
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+
+ }
+
+ if (CH->sus)
+ SLOT_rs = 16 + (5<<2);
+ else
+ SLOT_rs = 16 + (7<<2);
+
+ SLOT->eg_sh_rs = eg_rate_shift [SLOT_rs + SLOT->ksr ];
+ SLOT->eg_sel_rs = eg_rate_select[SLOT_rs + SLOT->ksr ];
+
+ SLOT_dp = 16 + (13<<2);
+ SLOT->eg_sh_dp = eg_rate_shift [SLOT_dp + SLOT->ksr ];
+ SLOT->eg_sel_dp = eg_rate_select[SLOT_dp + SLOT->ksr ];
+}
+
+/* set multi,am,vib,EG-TYP,KSR,mul */
+INLINE void set_mul(YM2413 *chip,int slot,int v)
+{
+ OPLL_CH *CH = &chip->P_CH[slot/2];
+ OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->mul = mul_tab[v&0x0f];
+ SLOT->KSR = (v&0x10) ? 0 : 2;
+ SLOT->eg_type = (v&0x20);
+ SLOT->vib = (v&0x40);
+ SLOT->AMmask = (v&0x80) ? ~0 : 0;
+ CALC_FCSLOT(CH,SLOT);
+}
+
+/* set ksl, tl */
+INLINE void set_ksl_tl(YM2413 *chip,int chan,int v)
+{
+ int ksl;
+ OPLL_CH *CH = &chip->P_CH[chan];
+/* modulator */
+ OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
+
+ ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
+
+ SLOT->ksl = ksl ? 3-ksl : 31;
+ SLOT->TL = (v&0x3f)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+}
+
+/* set ksl , waveforms, feedback */
+INLINE void set_ksl_wave_fb(YM2413 *chip,int chan,int v)
+{
+ int ksl;
+ OPLL_CH *CH = &chip->P_CH[chan];
+/* modulator */
+ OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
+ SLOT->wavetable = ((v&0x08)>>3)*SIN_LEN;
+ SLOT->fb_shift = (v&7) ? (v&7) + 8 : 0;
+
+/*carrier*/
+ SLOT = &CH->SLOT[SLOT2];
+ ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
+
+ SLOT->ksl = ksl ? 3-ksl : 31;
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+
+ SLOT->wavetable = ((v&0x10)>>4)*SIN_LEN;
+}
+
+/* set attack rate & decay rate */
+INLINE void set_ar_dr(YM2413 *chip,int slot,int v)
+{
+ OPLL_CH *CH = &chip->P_CH[slot/2];
+ OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
+
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+
+ SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+}
+
+/* set sustain level & release rate */
+INLINE void set_sl_rr(YM2413 *chip,int slot,int v)
+{
+ OPLL_CH *CH = &chip->P_CH[slot/2];
+ OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->sl = sl_tab[ v>>4 ];
+
+ SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+}
+
+static void load_instrument(YM2413 *chip, UINT32 chan, UINT32 slot, UINT8* inst )
+{
+ set_mul (chip, slot, inst[0]);
+ set_mul (chip, slot+1, inst[1]);
+ set_ksl_tl (chip, chan, inst[2]);
+ set_ksl_wave_fb (chip, chan, inst[3]);
+ set_ar_dr (chip, slot, inst[4]);
+ set_ar_dr (chip, slot+1, inst[5]);
+ set_sl_rr (chip, slot, inst[6]);
+ set_sl_rr (chip, slot+1, inst[7]);
+}
+static void update_instrument_zero(YM2413 *chip, UINT8 r )
+{
+ UINT8* inst = &chip->inst_tab[0][0]; /* point to user instrument */
+ UINT32 chan;
+ UINT32 chan_max;
+
+ chan_max = 9;
+ if (chip->rhythm & 0x20)
+ chan_max=6;
+
+ switch(r)
+ {
+ case 0:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_mul (chip, chan*2, inst[0]);
+ }
+ }
+ break;
+ case 1:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_mul (chip, chan*2+1,inst[1]);
+ }
+ }
+ break;
+ case 2:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_ksl_tl (chip, chan, inst[2]);
+ }
+ }
+ break;
+ case 3:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_ksl_wave_fb (chip, chan, inst[3]);
+ }
+ }
+ break;
+ case 4:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_ar_dr (chip, chan*2, inst[4]);
+ }
+ }
+ break;
+ case 5:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_ar_dr (chip, chan*2+1,inst[5]);
+ }
+ }
+ break;
+ case 6:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_sl_rr (chip, chan*2, inst[6]);
+ }
+ }
+ break;
+ case 7:
+ for (chan=0; chan<chan_max; chan++)
+ {
+ if ((chip->instvol_r[chan]&0xf0)==0)
+ {
+ set_sl_rr (chip, chan*2+1,inst[7]);
+ }
+ }
+ break;
+ }
+}
+
+/* write a value v to register r on chip chip */
+static void OPLLWriteReg(YM2413 *chip, int r, int v)
+{
+ OPLL_CH *CH;
+ OPLL_SLOT *SLOT;
+ UINT8 *inst;
+ int chan;
+ int slot;
+
+ /* adjust bus to 8 bits */
+ r &= 0xff;
+ v &= 0xff;
+
+
+#ifdef LOG_CYM_FILE
+ if ((cymfile) && (r!=8) )
+ {
+ fputc( (unsigned char)r, cymfile );
+ fputc( (unsigned char)v, cymfile );
+ }
+#endif
+
+
+ switch(r&0xf0)
+ {
+ case 0x00: /* 00-0f:control */
+ {
+ switch(r&0x0f)
+ {
+ case 0x00: /* AM/VIB/EGTYP/KSR/MULTI (modulator) */
+ case 0x01: /* AM/VIB/EGTYP/KSR/MULTI (carrier) */
+ case 0x02: /* Key Scale Level, Total Level (modulator) */
+ case 0x03: /* Key Scale Level, carrier waveform, modulator waveform, Feedback */
+ case 0x04: /* Attack, Decay (modulator) */
+ case 0x05: /* Attack, Decay (carrier) */
+ case 0x06: /* Sustain, Release (modulator) */
+ case 0x07: /* Sustain, Release (carrier) */
+ chip->inst_tab[0][r & 0x07] = v;
+ update_instrument_zero(chip,r&7);
+ break;
+
+ case 0x0e: /* x, x, r,bd,sd,tom,tc,hh */
+ {
+ if(v&0x20)
+ {
+ if ((chip->rhythm&0x20)==0)
+ /*rhythm off to on*/
+ {
+ logerror("YM2413: Rhythm mode enable\n");
+
+ /* Load instrument settings for channel seven(chan=6 since we're zero based). (Bass drum) */
+ chan = 6;
+ inst = &chip->inst_tab[16][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+
+ /* Load instrument settings for channel eight. (High hat and snare drum) */
+ chan = 7;
+ inst = &chip->inst_tab[17][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+
+ CH = &chip->P_CH[chan];
+ SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH */
+ SLOT->TL = ((chip->instvol_r[chan]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+
+ /* Load instrument settings for channel nine. (Tom-tom and top cymbal) */
+ chan = 8;
+ inst = &chip->inst_tab[18][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+
+ CH = &chip->P_CH[chan];
+ SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is TOM */
+ SLOT->TL = ((chip->instvol_r[chan]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+ }
+ /* BD key on/off */
+ if(v&0x10)
+ {
+ KEY_ON (&chip->P_CH[6].SLOT[SLOT1], 2);
+ KEY_ON (&chip->P_CH[6].SLOT[SLOT2], 2);
+ }
+ else
+ {
+ KEY_OFF(&chip->P_CH[6].SLOT[SLOT1],~2);
+ KEY_OFF(&chip->P_CH[6].SLOT[SLOT2],~2);
+ }
+ /* HH key on/off */
+ if(v&0x01) KEY_ON (&chip->P_CH[7].SLOT[SLOT1], 2);
+ else KEY_OFF(&chip->P_CH[7].SLOT[SLOT1],~2);
+ /* SD key on/off */
+ if(v&0x08) KEY_ON (&chip->P_CH[7].SLOT[SLOT2], 2);
+ else KEY_OFF(&chip->P_CH[7].SLOT[SLOT2],~2);
+ /* TOM key on/off */
+ if(v&0x04) KEY_ON (&chip->P_CH[8].SLOT[SLOT1], 2);
+ else KEY_OFF(&chip->P_CH[8].SLOT[SLOT1],~2);
+ /* TOP-CY key on/off */
+ if(v&0x02) KEY_ON (&chip->P_CH[8].SLOT[SLOT2], 2);
+ else KEY_OFF(&chip->P_CH[8].SLOT[SLOT2],~2);
+ }
+ else
+ {
+ if ((chip->rhythm&0x20)==1)
+ /*rhythm on to off*/
+ {
+ logerror("YM2413: Rhythm mode disable\n");
+ /* Load instrument settings for channel seven(chan=6 since we're zero based).*/
+ chan = 6;
+ inst = &chip->inst_tab[chip->instvol_r[chan]>>4][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+
+ /* Load instrument settings for channel eight.*/
+ chan = 7;
+ inst = &chip->inst_tab[chip->instvol_r[chan]>>4][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+
+ /* Load instrument settings for channel nine.*/
+ chan = 8;
+ inst = &chip->inst_tab[chip->instvol_r[chan]>>4][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+ }
+ /* BD key off */
+ KEY_OFF(&chip->P_CH[6].SLOT[SLOT1],~2);
+ KEY_OFF(&chip->P_CH[6].SLOT[SLOT2],~2);
+ /* HH key off */
+ KEY_OFF(&chip->P_CH[7].SLOT[SLOT1],~2);
+ /* SD key off */
+ KEY_OFF(&chip->P_CH[7].SLOT[SLOT2],~2);
+ /* TOM key off */
+ KEY_OFF(&chip->P_CH[8].SLOT[SLOT1],~2);
+ /* TOP-CY off */
+ KEY_OFF(&chip->P_CH[8].SLOT[SLOT2],~2);
+ }
+ chip->rhythm = v&0x3f;
+ }
+ break;
+ }
+ }
+ break;
+
+ case 0x10:
+ case 0x20:
+ {
+ int block_fnum;
+
+ chan = r&0x0f;
+
+ if (chan >= 9)
+ chan -= 9; /* verified on real YM2413 */
+
+ CH = &chip->P_CH[chan];
+
+ if(r&0x10)
+ { /* 10-18: FNUM 0-7 */
+ block_fnum = (CH->block_fnum&0x0f00) | v;
+ }
+ else
+ { /* 20-28: suson, keyon, block, FNUM 8 */
+ block_fnum = ((v&0x0f)<<8) | (CH->block_fnum&0xff);
+
+ if(v&0x10)
+ {
+ KEY_ON (&CH->SLOT[SLOT1], 1);
+ KEY_ON (&CH->SLOT[SLOT2], 1);
+ }
+ else
+ {
+ KEY_OFF(&CH->SLOT[SLOT1],~1);
+ KEY_OFF(&CH->SLOT[SLOT2],~1);
+ }
+
+
+ if (CH->sus!=(v&0x20))
+ logerror("chan=%i sus=%2x\n",chan,v&0x20);
+
+ CH->sus = v & 0x20;
+ }
+ /* update */
+ if(CH->block_fnum != block_fnum)
+ {
+ UINT8 block;
+
+ CH->block_fnum = block_fnum;
+
+ /* BLK 2,1,0 bits -> bits 3,2,1 of kcode, FNUM MSB -> kcode LSB */
+ CH->kcode = (block_fnum&0x0f00)>>8;
+
+ CH->ksl_base = ksl_tab[block_fnum>>5];
+
+ block_fnum = block_fnum * 2;
+ block = (block_fnum&0x1c00) >> 10;
+ CH->fc = chip->fn_tab[block_fnum&0x03ff] >> (7-block);
+
+ /* refresh Total Level in both SLOTs of this channel */
+ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
+ CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
+
+ /* refresh frequency counter in both SLOTs of this channel */
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
+ }
+ }
+ break;
+
+ case 0x30: /* inst 4 MSBs, VOL 4 LSBs */
+ {
+ UINT8 old_instvol;
+
+ chan = r&0x0f;
+
+ if (chan >= 9)
+ chan -= 9; /* verified on real YM2413 */
+
+ old_instvol = chip->instvol_r[chan];
+ chip->instvol_r[chan] = v; /* store for later use */
+
+ CH = &chip->P_CH[chan];
+ SLOT = &CH->SLOT[SLOT2]; /* carrier */
+ SLOT->TL = ((v&0x0f)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+
+
+ /*check wether we are in rhythm mode and handle instrument/volume register accordingly*/
+ if ((chan>=6) && (chip->rhythm&0x20))
+ {
+ /* we're in rhythm mode*/
+
+ if (chan>=7) /* only for channel 7 and 8 (channel 6 is handled in usual way)*/
+ {
+ SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH(chan=7) or TOM(chan=8) */
+ SLOT->TL = ((chip->instvol_r[chan]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+ }
+ }
+ else
+ {
+ if ( (old_instvol&0xf0) == (v&0xf0) )
+ return;
+
+ inst = &chip->inst_tab[chip->instvol_r[chan]>>4][0];
+ slot = chan*2;
+
+ load_instrument(chip, chan, slot, inst);
+
+ #if 0
+ logerror("YM2413: chan#%02i inst=%02i: (r=%2x, v=%2x)\n",chan,v>>4,r,v);
+ logerror(" 0:%2x 1:%2x\n",inst[0],inst[1]); logerror(" 2:%2x 3:%2x\n",inst[2],inst[3]);
+ logerror(" 4:%2x 5:%2x\n",inst[4],inst[5]); logerror(" 6:%2x 7:%2x\n",inst[6],inst[7]);
+ #endif
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+#ifdef LOG_CYM_FILE
+static TIMER_CALLBACK( cymfile_callback )
+{
+ if (cymfile)
+ {
+ fputc( (unsigned char)8, cymfile );
+ }
+}
+#endif
+
+/* lock/unlock for common table */
+static int OPLL_LockTable(void)
+{
+ num_lock++;
+ if(num_lock>1) return 0;
+
+ /* first time */
+
+ cur_chip = NULL;
+ /* allocate total level table (128kb space) */
+ if( !init_tables() )
+ {
+ num_lock--;
+ return -1;
+ }
+
+#ifdef LOG_CYM_FILE
+ cymfile = fopen("2413_.cym","wb");
+ if (cymfile)
+ timer_pulse ( ATTOTIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/
+ else
+ logerror("Could not create file 2413_.cym\n");
+#endif
+
+ return 0;
+}
+
+static void OPLL_UnLockTable(void)
+{
+ if(num_lock) num_lock--;
+ if(num_lock) return;
+
+ /* last time */
+
+ cur_chip = NULL;
+ OPLCloseTable();
+
+#ifdef LOG_CYM_FILE
+ fclose (cymfile);
+ cymfile = NULL;
+#endif
+
+}
+
+static void OPLLResetChip(YM2413 *chip)
+{
+ int c,s;
+ int i;
+
+ chip->eg_timer = 0;
+ chip->eg_cnt = 0;
+
+ chip->noise_rng = 1; /* noise shift register */
+
+
+ /* setup instruments table */
+ for (i=0; i<19; i++)
+ {
+ for (c=0; c<8; c++)
+ {
+ chip->inst_tab[i][c] = table[i][c];
+ }
+ }
+
+
+ /* reset with register write */
+ OPLLWriteReg(chip,0x0f,0); /*test reg*/
+ for(i = 0x3f ; i >= 0x10 ; i-- ) OPLLWriteReg(chip,i,0x00);
+
+ /* reset operator parameters */
+ for( c = 0 ; c < 9 ; c++ )
+ {
+ OPLL_CH *CH = &chip->P_CH[c];
+ for(s = 0 ; s < 2 ; s++ )
+ {
+ /* wave table */
+ CH->SLOT[s].wavetable = 0;
+ CH->SLOT[s].state = EG_OFF;
+ CH->SLOT[s].volume = MAX_ATT_INDEX;
+ }
+ }
+}
+
+/* Create one of virtual YM2413 */
+/* 'clock' is chip clock in Hz */
+/* 'rate' is sampling rate */
+static YM2413 *OPLLCreate(int clock, int rate)
+{
+ char *ptr;
+ YM2413 *chip;
+ int state_size;
+
+ if (OPLL_LockTable() ==-1) return NULL;
+
+ /* calculate chip state size */
+ state_size = sizeof(YM2413);
+
+ /* allocate memory block */
+ ptr = malloc(state_size);
+
+ if (ptr==NULL)
+ return NULL;
+
+ /* clear */
+ memset(ptr,0,state_size);
+
+ chip = (YM2413 *)ptr;
+
+ chip->clock = clock;
+ chip->rate = rate;
+
+ /* init global tables */
+ OPLL_initalize(chip);
+
+ /* reset chip */
+ OPLLResetChip(chip);
+ return chip;
+}
+
+/* Destroy one of virtual YM3812 */
+static void OPLLDestroy(YM2413 *chip)
+{
+ OPLL_UnLockTable();
+ free(chip);
+}
+
+/* Option handlers */
+
+static void OPLLSetUpdateHandler(YM2413 *chip,OPLL_UPDATEHANDLER UpdateHandler,void * param)
+{
+ chip->UpdateHandler = UpdateHandler;
+ chip->UpdateParam = param;
+}
+
+/* YM3812 I/O interface */
+static void OPLLWrite(YM2413 *chip,int a,int v)
+{
+ if( !(a&1) )
+ { /* address port */
+ chip->address = v & 0xff;
+ }
+ else
+ { /* data port */
+ if(chip->UpdateHandler) chip->UpdateHandler(chip->UpdateParam,0);
+ OPLLWriteReg(chip,chip->address,v);
+ }
+}
+
+static unsigned char OPLLRead(YM2413 *chip,int a)
+{
+ if( !(a&1) )
+ {
+ /* status port */
+ return chip->status;
+ }
+ return 0xff;
+}
+
+
+
+
+
+void * YM2413Init(int clock, int rate)
+{
+ /* emulator create */
+ return OPLLCreate(clock, rate);
+}
+
+void YM2413Shutdown(void *chip)
+{
+ YM2413 *OPLL = chip;
+
+ /* emulator shutdown */
+ OPLLDestroy(OPLL);
+}
+
+void YM2413ResetChip(void *chip)
+{
+ YM2413 *OPLL = chip;
+ OPLLResetChip(OPLL);
+}
+
+void YM2413Write(void *chip, int a, int v)
+{
+ YM2413 *OPLL = chip;
+ OPLLWrite(OPLL, a, v);
+}
+
+unsigned char YM2413Read(void *chip, int a)
+{
+ YM2413 *OPLL = chip;
+ return OPLLRead(OPLL, a) & 0x03 ;
+}
+
+void YM2413SetUpdateHandler(void *chip,OPLL_UPDATEHANDLER UpdateHandler,void *param)
+{
+ YM2413 *OPLL = chip;
+ OPLLSetUpdateHandler(OPLL, UpdateHandler, param);
+}
+
+
+/*
+** Generate samples for one of the YM2413's
+**
+** 'which' is the virtual YM2413 number
+** '*buffer' is the output buffer pointer
+** 'length' is the number of samples that should be generated
+*/
+void YM2413UpdateOne(void *_chip, SAMP **buffers, int length)
+{
+ YM2413 *chip = _chip;
+ UINT8 rhythm = chip->rhythm&0x20;
+ SAMP *bufMO = buffers[0];
+ SAMP *bufRO = buffers[1];
+
+ int i;
+
+ if( (void *)chip != cur_chip ){
+ cur_chip = (void *)chip;
+ /* rhythm slots */
+ SLOT7_1 = &chip->P_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &chip->P_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &chip->P_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &chip->P_CH[8].SLOT[SLOT2];
+ }
+
+
+ for( i=0; i < length ; i++ )
+ {
+ int mo,ro;
+
+ output[0] = 0;
+ output[1] = 0;
+
+ advance_lfo(chip);
+
+ /* FM part */
+ chan_calc(&chip->P_CH[0]);
+//SAVE_SEPARATE_CHANNEL(0);
+ chan_calc(&chip->P_CH[1]);
+ chan_calc(&chip->P_CH[2]);
+ chan_calc(&chip->P_CH[3]);
+ chan_calc(&chip->P_CH[4]);
+ chan_calc(&chip->P_CH[5]);
+
+ if(!rhythm)
+ {
+ chan_calc(&chip->P_CH[6]);
+ chan_calc(&chip->P_CH[7]);
+ chan_calc(&chip->P_CH[8]);
+ }
+ else /* Rhythm part */
+ {
+ rhythm_calc(&chip->P_CH[0], (chip->noise_rng>>0)&1 );
+ }
+
+ mo = output[0];
+ ro = output[1];
+
+ mo >>= FINAL_SH;
+ ro >>= FINAL_SH;
+
+ /* limit check */
+ mo = limit( mo , MAXOUT, MINOUT );
+ ro = limit( ro , MAXOUT, MINOUT );
+
+ #ifdef SAVE_SAMPLE
+ if (which==0)
+ {
+ SAVE_ALL_CHANNELS
+ }
+ #endif
+
+ /* store to sound buffer */
+ bufMO[i] = mo;
+ bufRO[i] = ro;
+
+ advance(chip);
+ }
+
+}