summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/sound/fmopl.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/emu/sound/fmopl.c')
-rw-r--r--src/emu/sound/fmopl.c2625
1 files changed, 2625 insertions, 0 deletions
diff --git a/src/emu/sound/fmopl.c b/src/emu/sound/fmopl.c
new file mode 100644
index 00000000000..358e44c675a
--- /dev/null
+++ b/src/emu/sound/fmopl.c
@@ -0,0 +1,2625 @@
+/*
+**
+** File: fmopl.c - software implementation of FM sound generator
+** types OPL and OPL2
+**
+** Copyright (C) 2002,2003 Jarek Burczynski (bujar at mame dot net)
+** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
+**
+** Version 0.72
+**
+
+Revision History:
+
+04-08-2003 Jarek Burczynski:
+ - removed BFRDY hack. BFRDY is busy flag, and it should be 0 only when the chip
+ handles memory read/write or during the adpcm synthesis when the chip
+ requests another byte of ADPCM data.
+
+24-07-2003 Jarek Burczynski:
+ - added a small hack for Y8950 status BFRDY flag (bit 3 should be set after
+ some (unknown) delay). Right now it's always set.
+
+14-06-2003 Jarek Burczynski:
+ - implemented all of the status register flags in Y8950 emulation
+ - renamed Y8950SetDeltaTMemory() parameters from _rom_ to _mem_ since
+ they can be either RAM or ROM
+
+08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip)
+ - corrected YM3526Read() to always set bit 2 and bit 1
+ to HIGH state - identical to YM3812Read (verified on real YM3526)
+
+04-28-2002 Jarek Burczynski:
+ - binary exact Envelope Generator (verified on real YM3812);
+ compared to YM2151: the EG clock is equal to internal_clock,
+ rates are 2 times slower and volume resolution is one bit less
+ - modified interface functions (they no longer return pointer -
+ that's internal to the emulator now):
+ - new wrapper functions for OPLCreate: YM3526Init(), YM3812Init() and Y8950Init()
+ - corrected 'off by one' error in feedback calculations (when feedback is off)
+ - enabled waveform usage (credit goes to Vlad Romascanu and zazzal22)
+ - speeded up noise generator calculations (Nicola Salmoria)
+
+03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip)
+ Complete rewrite (all verified on real YM3812):
+ - corrected sin_tab and tl_tab data
+ - corrected operator output calculations
+ - corrected waveform_select_enable register;
+ simply: ignore all writes to waveform_select register when
+ waveform_select_enable == 0 and do not change the waveform previously selected.
+ - corrected KSR handling
+ - corrected Envelope Generator: attack shape, Sustain mode and
+ Percussive/Non-percussive modes handling
+ - Envelope Generator rates are two times slower now
+ - LFO amplitude (tremolo) and phase modulation (vibrato)
+ - rhythm sounds phase generation
+ - white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm)
+ - corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM)
+ - funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1)
+
+12-28-2001 Acho A. Tang
+ - reflected Delta-T EOS status on Y8950 status port.
+ - fixed subscription range of attack/decay tables
+
+
+ To do:
+ add delay before key off in CSM mode (see CSMKeyControll)
+ verify volume of the FM part on the Y8950
+*/
+
+#include <math.h>
+
+#include "sndintrf.h" /* use M.A.M.E. */
+
+#include "ymdeltat.h"
+
+#include "fmopl.h"
+
+
+
+/* output final shift */
+#if (OPL_SAMPLE_BITS==16)
+ #define FINAL_SH (0)
+ #define MAXOUT (+32767)
+ #define MINOUT (-32768)
+#else
+ #define FINAL_SH (8)
+ #define MAXOUT (+127)
+ #define MINOUT (-128)
+#endif
+
+
+#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
+#define EG_SH 16 /* 16.16 fixed point (EG timing) */
+#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
+#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
+
+#define FREQ_MASK ((1<<FREQ_SH)-1)
+
+/* envelope output entries */
+#define ENV_BITS 10
+#define ENV_LEN (1<<ENV_BITS)
+#define ENV_STEP (128.0/ENV_LEN)
+
+#define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/
+#define MIN_ATT_INDEX (0)
+
+/* sinwave entries */
+#define SIN_BITS 10
+#define SIN_LEN (1<<SIN_BITS)
+#define SIN_MASK (SIN_LEN-1)
+
+#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
+
+
+
+/* register number to channel number , slot offset */
+#define SLOT1 0
+#define SLOT2 1
+
+/* Envelope Generator phases */
+
+#define EG_ATT 4
+#define EG_DEC 3
+#define EG_SUS 2
+#define EG_REL 1
+#define EG_OFF 0
+
+
+/* save output as raw 16-bit sample */
+
+/*#define SAVE_SAMPLE*/
+
+#ifdef SAVE_SAMPLE
+INLINE signed int acc_calc(signed int value)
+{
+ if (value>=0)
+ {
+ if (value < 0x0200)
+ return (value & ~0);
+ if (value < 0x0400)
+ return (value & ~1);
+ if (value < 0x0800)
+ return (value & ~3);
+ if (value < 0x1000)
+ return (value & ~7);
+ if (value < 0x2000)
+ return (value & ~15);
+ if (value < 0x4000)
+ return (value & ~31);
+ return (value & ~63);
+ }
+ /*else value < 0*/
+ if (value > -0x0200)
+ return (~abs(value) & ~0);
+ if (value > -0x0400)
+ return (~abs(value) & ~1);
+ if (value > -0x0800)
+ return (~abs(value) & ~3);
+ if (value > -0x1000)
+ return (~abs(value) & ~7);
+ if (value > -0x2000)
+ return (~abs(value) & ~15);
+ if (value > -0x4000)
+ return (~abs(value) & ~31);
+ return (~abs(value) & ~63);
+}
+
+
+static FILE *sample[1];
+ #if 1 /*save to MONO file */
+ #define SAVE_ALL_CHANNELS \
+ { signed int pom = acc_calc(lt); \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ }
+ #else /*save to STEREO file */
+ #define SAVE_ALL_CHANNELS \
+ { signed int pom = lt; \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ pom = rt; \
+ fputc((unsigned short)pom&0xff,sample[0]); \
+ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
+ }
+ #endif
+#endif
+
+/* #define LOG_CYM_FILE */
+#ifdef LOG_CYM_FILE
+ FILE * cymfile = NULL;
+#endif
+
+
+
+#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
+#define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */
+#define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */
+#define OPL_TYPE_IO 0x08 /* I/O port */
+
+/* ---------- Generic interface section ---------- */
+#define OPL_TYPE_YM3526 (0)
+#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
+#define OPL_TYPE_Y8950 (OPL_TYPE_ADPCM|OPL_TYPE_KEYBOARD|OPL_TYPE_IO)
+
+
+
+typedef struct{
+ UINT32 ar; /* attack rate: AR<<2 */
+ UINT32 dr; /* decay rate: DR<<2 */
+ UINT32 rr; /* release rate:RR<<2 */
+ UINT8 KSR; /* key scale rate */
+ UINT8 ksl; /* keyscale level */
+ UINT8 ksr; /* key scale rate: kcode>>KSR */
+ UINT8 mul; /* multiple: mul_tab[ML] */
+
+ /* Phase Generator */
+ UINT32 Cnt; /* frequency counter */
+ UINT32 Incr; /* frequency counter step */
+ UINT8 FB; /* feedback shift value */
+ INT32 *connect1; /* slot1 output pointer */
+ INT32 op1_out[2]; /* slot1 output for feedback */
+ UINT8 CON; /* connection (algorithm) type */
+
+ /* Envelope Generator */
+ UINT8 eg_type; /* percussive/non-percussive mode */
+ UINT8 state; /* phase type */
+ UINT32 TL; /* total level: TL << 2 */
+ INT32 TLL; /* adjusted now TL */
+ INT32 volume; /* envelope counter */
+ UINT32 sl; /* sustain level: sl_tab[SL] */
+ UINT8 eg_sh_ar; /* (attack state) */
+ UINT8 eg_sel_ar; /* (attack state) */
+ UINT8 eg_sh_dr; /* (decay state) */
+ UINT8 eg_sel_dr; /* (decay state) */
+ UINT8 eg_sh_rr; /* (release state) */
+ UINT8 eg_sel_rr; /* (release state) */
+ UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
+
+ /* LFO */
+ UINT32 AMmask; /* LFO Amplitude Modulation enable mask */
+ UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/
+
+ /* waveform select */
+ UINT16 wavetable;
+} OPL_SLOT;
+
+typedef struct{
+ OPL_SLOT SLOT[2];
+ /* phase generator state */
+ UINT32 block_fnum; /* block+fnum */
+ UINT32 fc; /* Freq. Increment base */
+ UINT32 ksl_base; /* KeyScaleLevel Base step */
+ UINT8 kcode; /* key code (for key scaling) */
+} OPL_CH;
+
+/* OPL state */
+typedef struct fm_opl_f {
+ /* FM channel slots */
+ OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/
+
+ UINT32 eg_cnt; /* global envelope generator counter */
+ UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
+ UINT32 eg_timer_add; /* step of eg_timer */
+ UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
+
+ UINT8 rhythm; /* Rhythm mode */
+
+ UINT32 fn_tab[1024]; /* fnumber->increment counter */
+
+ /* LFO */
+ UINT8 lfo_am_depth;
+ UINT8 lfo_pm_depth_range;
+ UINT32 lfo_am_cnt;
+ UINT32 lfo_am_inc;
+ UINT32 lfo_pm_cnt;
+ UINT32 lfo_pm_inc;
+
+ UINT32 noise_rng; /* 23 bit noise shift register */
+ UINT32 noise_p; /* current noise 'phase' */
+ UINT32 noise_f; /* current noise period */
+
+ UINT8 wavesel; /* waveform select enable flag */
+
+ UINT32 T[2]; /* timer counters */
+ UINT8 st[2]; /* timer enable */
+
+#if BUILD_Y8950
+ /* Delta-T ADPCM unit (Y8950) */
+
+ YM_DELTAT *deltat;
+
+ /* Keyboard and I/O ports interface */
+ UINT8 portDirection;
+ UINT8 portLatch;
+ OPL_PORTHANDLER_R porthandler_r;
+ OPL_PORTHANDLER_W porthandler_w;
+ void * port_param;
+ OPL_PORTHANDLER_R keyboardhandler_r;
+ OPL_PORTHANDLER_W keyboardhandler_w;
+ void * keyboard_param;
+#endif
+
+ /* external event callback handlers */
+ OPL_TIMERHANDLER timer_handler; /* TIMER handler */
+ void *TimerParam; /* TIMER parameter */
+ OPL_IRQHANDLER IRQHandler; /* IRQ handler */
+ void *IRQParam; /* IRQ parameter */
+ OPL_UPDATEHANDLER UpdateHandler;/* stream update handler */
+ void *UpdateParam; /* stream update parameter */
+
+ UINT8 type; /* chip type */
+ UINT8 address; /* address register */
+ UINT8 status; /* status flag */
+ UINT8 statusmask; /* status mask */
+ UINT8 mode; /* Reg.08 : CSM,notesel,etc. */
+
+ UINT32 clock; /* master clock (Hz) */
+ UINT32 rate; /* sampling rate (Hz) */
+ double freqbase; /* frequency base */
+ attotime TimerBase; /* Timer base time (==sampling time)*/
+} FM_OPL;
+
+
+
+/* mapping of register number (offset) to slot number used by the emulator */
+static const int slot_array[32]=
+{
+ 0, 2, 4, 1, 3, 5,-1,-1,
+ 6, 8,10, 7, 9,11,-1,-1,
+ 12,14,16,13,15,17,-1,-1,
+ -1,-1,-1,-1,-1,-1,-1,-1
+};
+
+/* key scale level */
+/* table is 3dB/octave , DV converts this into 6dB/octave */
+/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
+#define DV (0.1875/2.0)
+static const UINT32 ksl_tab[8*16]=
+{
+ /* OCT 0 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ /* OCT 1 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
+ 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
+ /* OCT 2 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
+ 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
+ 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
+ 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
+ /* OCT 3 */
+ 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
+ 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
+ 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
+ 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
+ /* OCT 4 */
+ 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
+ 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
+ 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
+ 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
+ /* OCT 5 */
+ 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
+ 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
+ 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
+ 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
+ /* OCT 6 */
+ 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
+ 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
+ 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
+ 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
+ /* OCT 7 */
+ 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
+ 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
+ 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
+ 19.875/DV,20.250/DV,20.625/DV,21.000/DV
+};
+#undef DV
+
+/* sustain level table (3dB per step) */
+/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
+#define SC(db) (UINT32) ( db * (2.0/ENV_STEP) )
+static const UINT32 sl_tab[16]={
+ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
+ SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
+};
+#undef SC
+
+
+#define RATE_STEPS (8)
+static const unsigned char eg_inc[15*RATE_STEPS]={
+
+/*cycle:0 1 2 3 4 5 6 7*/
+
+/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
+/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
+/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
+/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
+
+/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
+/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
+/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
+/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
+
+/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
+/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
+/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
+/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
+
+/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
+/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
+/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
+};
+
+
+#define O(a) (a*RATE_STEPS)
+
+/*note that there is no O(13) in this table - it's directly in the code */
+static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
+/* 16 infinite time rates */
+O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
+O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
+
+/* rates 00-12 */
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+O( 0),O( 1),O( 2),O( 3),
+
+/* rate 13 */
+O( 4),O( 5),O( 6),O( 7),
+
+/* rate 14 */
+O( 8),O( 9),O(10),O(11),
+
+/* rate 15 */
+O(12),O(12),O(12),O(12),
+
+/* 16 dummy rates (same as 15 3) */
+O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
+O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
+
+};
+#undef O
+
+/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
+/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
+/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
+
+#define O(a) (a*1)
+static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
+/* 16 infinite time rates */
+O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
+O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
+
+/* rates 00-12 */
+O(12),O(12),O(12),O(12),
+O(11),O(11),O(11),O(11),
+O(10),O(10),O(10),O(10),
+O( 9),O( 9),O( 9),O( 9),
+O( 8),O( 8),O( 8),O( 8),
+O( 7),O( 7),O( 7),O( 7),
+O( 6),O( 6),O( 6),O( 6),
+O( 5),O( 5),O( 5),O( 5),
+O( 4),O( 4),O( 4),O( 4),
+O( 3),O( 3),O( 3),O( 3),
+O( 2),O( 2),O( 2),O( 2),
+O( 1),O( 1),O( 1),O( 1),
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 13 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 14 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* rate 15 */
+O( 0),O( 0),O( 0),O( 0),
+
+/* 16 dummy rates (same as 15 3) */
+O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
+O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
+
+};
+#undef O
+
+
+/* multiple table */
+#define ML 2
+static const UINT8 mul_tab[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
+ 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
+ 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
+};
+#undef ML
+
+/* TL_TAB_LEN is calculated as:
+* 12 - sinus amplitude bits (Y axis)
+* 2 - sinus sign bit (Y axis)
+* TL_RES_LEN - sinus resolution (X axis)
+*/
+#define TL_TAB_LEN (12*2*TL_RES_LEN)
+static signed int tl_tab[TL_TAB_LEN];
+
+#define ENV_QUIET (TL_TAB_LEN>>4)
+
+/* sin waveform table in 'decibel' scale */
+/* four waveforms on OPL2 type chips */
+static unsigned int sin_tab[SIN_LEN * 4];
+
+
+/* LFO Amplitude Modulation table (verified on real YM3812)
+ 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
+
+ Length: 210 elements.
+
+ Each of the elements has to be repeated
+ exactly 64 times (on 64 consecutive samples).
+ The whole table takes: 64 * 210 = 13440 samples.
+
+ When AM = 1 data is used directly
+ When AM = 0 data is divided by 4 before being used (loosing precision is important)
+*/
+
+#define LFO_AM_TAB_ELEMENTS 210
+
+static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
+0,0,0,0,0,0,0,
+1,1,1,1,
+2,2,2,2,
+3,3,3,3,
+4,4,4,4,
+5,5,5,5,
+6,6,6,6,
+7,7,7,7,
+8,8,8,8,
+9,9,9,9,
+10,10,10,10,
+11,11,11,11,
+12,12,12,12,
+13,13,13,13,
+14,14,14,14,
+15,15,15,15,
+16,16,16,16,
+17,17,17,17,
+18,18,18,18,
+19,19,19,19,
+20,20,20,20,
+21,21,21,21,
+22,22,22,22,
+23,23,23,23,
+24,24,24,24,
+25,25,25,25,
+26,26,26,
+25,25,25,25,
+24,24,24,24,
+23,23,23,23,
+22,22,22,22,
+21,21,21,21,
+20,20,20,20,
+19,19,19,19,
+18,18,18,18,
+17,17,17,17,
+16,16,16,16,
+15,15,15,15,
+14,14,14,14,
+13,13,13,13,
+12,12,12,12,
+11,11,11,11,
+10,10,10,10,
+9,9,9,9,
+8,8,8,8,
+7,7,7,7,
+6,6,6,6,
+5,5,5,5,
+4,4,4,4,
+3,3,3,3,
+2,2,2,2,
+1,1,1,1
+};
+
+/* LFO Phase Modulation table (verified on real YM3812) */
+static const INT8 lfo_pm_table[8*8*2] = {
+
+/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
+0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
+0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
+0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
+1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
+1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
+2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
+1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
+3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
+2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
+4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
+2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
+5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
+3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
+6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
+
+/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
+3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
+7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
+};
+
+
+/* lock level of common table */
+static int num_lock = 0;
+
+
+static void *cur_chip = NULL; /* current chip pointer */
+static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
+
+static signed int phase_modulation; /* phase modulation input (SLOT 2) */
+static signed int output[1];
+
+#if BUILD_Y8950
+static INT32 output_deltat[4]; /* for Y8950 DELTA-T, chip is mono, that 4 here is just for safety */
+#endif
+
+static UINT32 LFO_AM;
+static INT32 LFO_PM;
+
+
+
+INLINE int limit( int val, int max, int min ) {
+ if ( val > max )
+ val = max;
+ else if ( val < min )
+ val = min;
+
+ return val;
+}
+
+
+/* status set and IRQ handling */
+INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
+{
+ /* set status flag */
+ OPL->status |= flag;
+ if(!(OPL->status & 0x80))
+ {
+ if(OPL->status & OPL->statusmask)
+ { /* IRQ on */
+ OPL->status |= 0x80;
+ /* callback user interrupt handler (IRQ is OFF to ON) */
+ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
+ }
+ }
+}
+
+/* status reset and IRQ handling */
+INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
+{
+ /* reset status flag */
+ OPL->status &=~flag;
+ if((OPL->status & 0x80))
+ {
+ if (!(OPL->status & OPL->statusmask) )
+ {
+ OPL->status &= 0x7f;
+ /* callback user interrupt handler (IRQ is ON to OFF) */
+ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
+ }
+ }
+}
+
+/* IRQ mask set */
+INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
+{
+ OPL->statusmask = flag;
+ /* IRQ handling check */
+ OPL_STATUS_SET(OPL,0);
+ OPL_STATUS_RESET(OPL,0);
+}
+
+
+/* advance LFO to next sample */
+INLINE void advance_lfo(FM_OPL *OPL)
+{
+ UINT8 tmp;
+
+ /* LFO */
+ OPL->lfo_am_cnt += OPL->lfo_am_inc;
+ if (OPL->lfo_am_cnt >= ((UINT32)LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
+ OPL->lfo_am_cnt -= ((UINT32)LFO_AM_TAB_ELEMENTS<<LFO_SH);
+
+ tmp = lfo_am_table[ OPL->lfo_am_cnt >> LFO_SH ];
+
+ if (OPL->lfo_am_depth)
+ LFO_AM = tmp;
+ else
+ LFO_AM = tmp>>2;
+
+ OPL->lfo_pm_cnt += OPL->lfo_pm_inc;
+ LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range;
+}
+
+/* advance to next sample */
+INLINE void advance(FM_OPL *OPL)
+{
+ OPL_CH *CH;
+ OPL_SLOT *op;
+ int i;
+
+ OPL->eg_timer += OPL->eg_timer_add;
+
+ while (OPL->eg_timer >= OPL->eg_timer_overflow)
+ {
+ OPL->eg_timer -= OPL->eg_timer_overflow;
+
+ OPL->eg_cnt++;
+
+ for (i=0; i<9*2; i++)
+ {
+ CH = &OPL->P_CH[i/2];
+ op = &CH->SLOT[i&1];
+
+ /* Envelope Generator */
+ switch(op->state)
+ {
+ case EG_ATT: /* attack phase */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
+ {
+ op->volume += (~op->volume *
+ (eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)])
+ ) >>3;
+
+ if (op->volume <= MIN_ATT_INDEX)
+ {
+ op->volume = MIN_ATT_INDEX;
+ op->state = EG_DEC;
+ }
+
+ }
+ break;
+
+ case EG_DEC: /* decay phase */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)];
+
+ if ( op->volume >= op->sl )
+ op->state = EG_SUS;
+
+ }
+ break;
+
+ case EG_SUS: /* sustain phase */
+
+ /* this is important behaviour:
+ one can change percusive/non-percussive modes on the fly and
+ the chip will remain in sustain phase - verified on real YM3812 */
+
+ if(op->eg_type) /* non-percussive mode */
+ {
+ /* do nothing */
+ }
+ else /* percussive mode */
+ {
+ /* during sustain phase chip adds Release Rate (in percussive mode) */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
+
+ if ( op->volume >= MAX_ATT_INDEX )
+ op->volume = MAX_ATT_INDEX;
+ }
+ /* else do nothing in sustain phase */
+ }
+ break;
+
+ case EG_REL: /* release phase */
+ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
+ {
+ op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
+
+ if ( op->volume >= MAX_ATT_INDEX )
+ {
+ op->volume = MAX_ATT_INDEX;
+ op->state = EG_OFF;
+ }
+
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+
+ for (i=0; i<9*2; i++)
+ {
+ CH = &OPL->P_CH[i/2];
+ op = &CH->SLOT[i&1];
+
+ /* Phase Generator */
+ if(op->vib)
+ {
+ UINT8 block;
+ unsigned int block_fnum = CH->block_fnum;
+
+ unsigned int fnum_lfo = (block_fnum&0x0380) >> 7;
+
+ signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ];
+
+ if (lfo_fn_table_index_offset) /* LFO phase modulation active */
+ {
+ block_fnum += lfo_fn_table_index_offset;
+ block = (block_fnum&0x1c00) >> 10;
+ op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
+ }
+ else /* LFO phase modulation = zero */
+ {
+ op->Cnt += op->Incr;
+ }
+ }
+ else /* LFO phase modulation disabled for this operator */
+ {
+ op->Cnt += op->Incr;
+ }
+ }
+
+ /* The Noise Generator of the YM3812 is 23-bit shift register.
+ * Period is equal to 2^23-2 samples.
+ * Register works at sampling frequency of the chip, so output
+ * can change on every sample.
+ *
+ * Output of the register and input to the bit 22 is:
+ * bit0 XOR bit14 XOR bit15 XOR bit22
+ *
+ * Simply use bit 22 as the noise output.
+ */
+
+ OPL->noise_p += OPL->noise_f;
+ i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
+ OPL->noise_p &= FREQ_MASK;
+ while (i)
+ {
+ /*
+ UINT32 j;
+ j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1;
+ OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1);
+ */
+
+ /*
+ Instead of doing all the logic operations above, we
+ use a trick here (and use bit 0 as the noise output).
+ The difference is only that the noise bit changes one
+ step ahead. This doesn't matter since we don't know
+ what is real state of the noise_rng after the reset.
+ */
+
+ if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302;
+ OPL->noise_rng >>= 1;
+
+ i--;
+ }
+}
+
+
+INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
+{
+ UINT32 p;
+
+ p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ];
+
+ if (p >= TL_TAB_LEN)
+ return 0;
+ return tl_tab[p];
+}
+
+INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
+{
+ UINT32 p;
+
+ p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ];
+
+ if (p >= TL_TAB_LEN)
+ return 0;
+ return tl_tab[p];
+}
+
+
+#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask))
+
+/* calculate output */
+INLINE void OPL_CALC_CH( OPL_CH *CH )
+{
+ OPL_SLOT *SLOT;
+ unsigned int env;
+ signed int out;
+
+ phase_modulation = 0;
+
+ /* SLOT 1 */
+ SLOT = &CH->SLOT[SLOT1];
+ env = volume_calc(SLOT);
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+ *SLOT->connect1 += SLOT->op1_out[0];
+ SLOT->op1_out[1] = 0;
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->FB)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable);
+}
+
+/*
+ operators used in the rhythm sounds generation process:
+
+ Envelope Generator:
+
+channel operator register number Bass High Snare Tom Top
+/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
+ 6 / 0 12 50 70 90 f0 +
+ 6 / 1 15 53 73 93 f3 +
+ 7 / 0 13 51 71 91 f1 +
+ 7 / 1 16 54 74 94 f4 +
+ 8 / 0 14 52 72 92 f2 +
+ 8 / 1 17 55 75 95 f5 +
+
+ Phase Generator:
+
+channel operator register number Bass High Snare Tom Top
+/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
+ 6 / 0 12 30 +
+ 6 / 1 15 33 +
+ 7 / 0 13 31 + + +
+ 7 / 1 16 34 ----- n o t u s e d -----
+ 8 / 0 14 32 +
+ 8 / 1 17 35 + +
+
+channel operator register number Bass High Snare Tom Top
+number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
+ 6 12,15 B6 A6 +
+
+ 7 13,16 B7 A7 + + +
+
+ 8 14,17 B8 A8 + + +
+
+*/
+
+/* calculate rhythm */
+
+INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
+{
+ OPL_SLOT *SLOT;
+ signed int out;
+ unsigned int env;
+
+
+ /* Bass Drum (verified on real YM3812):
+ - depends on the channel 6 'connect' register:
+ when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
+ when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
+ - output sample always is multiplied by 2
+ */
+
+ phase_modulation = 0;
+ /* SLOT 1 */
+ SLOT = &CH[6].SLOT[SLOT1];
+ env = volume_calc(SLOT);
+
+ out = SLOT->op1_out[0] + SLOT->op1_out[1];
+ SLOT->op1_out[0] = SLOT->op1_out[1];
+
+ if (!SLOT->CON)
+ phase_modulation = SLOT->op1_out[0];
+ /* else ignore output of operator 1 */
+
+ SLOT->op1_out[1] = 0;
+ if( env < ENV_QUIET )
+ {
+ if (!SLOT->FB)
+ out = 0;
+ SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ }
+
+ /* SLOT 2 */
+ SLOT++;
+ env = volume_calc(SLOT);
+ if( env < ENV_QUIET )
+ output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2;
+
+
+ /* Phase generation is based on: */
+ /* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */
+ /* SD (16) channel 7->slot 1 */
+ /* TOM (14) channel 8->slot 1 */
+ /* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */
+
+ /* Envelope generation based on: */
+ /* HH channel 7->slot1 */
+ /* SD channel 7->slot2 */
+ /* TOM channel 8->slot1 */
+ /* TOP channel 8->slot2 */
+
+
+ /* The following formulas can be well optimized.
+ I leave them in direct form for now (in case I've missed something).
+ */
+
+ /* High Hat (verified on real YM3812) */
+ env = volume_calc(SLOT7_1);
+ if( env < ENV_QUIET )
+ {
+
+ /* high hat phase generation:
+ phase = d0 or 234 (based on frequency only)
+ phase = 34 or 2d0 (based on noise)
+ */
+
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
+ unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
+ unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
+
+ unsigned char res1 = (bit2 ^ bit7) | bit3;
+
+ /* when res1 = 0 phase = 0x000 | 0xd0; */
+ /* when res1 = 1 phase = 0x200 | (0xd0>>2); */
+ UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
+
+ /* enable gate based on frequency of operator 2 in channel 8 */
+ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
+ unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
+
+ unsigned char res2 = (bit3e ^ bit5e);
+
+ /* when res2 = 0 pass the phase from calculation above (res1); */
+ /* when res2 = 1 phase = 0x200 | (0xd0>>2); */
+ if (res2)
+ phase = (0x200|(0xd0>>2));
+
+
+ /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
+ /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
+ if (phase&0x200)
+ {
+ if (noise)
+ phase = 0x200|0xd0;
+ }
+ else
+ /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
+ /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
+ {
+ if (noise)
+ phase = 0xd0>>2;
+ }
+
+ output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
+ }
+
+ /* Snare Drum (verified on real YM3812) */
+ env = volume_calc(SLOT7_2);
+ if( env < ENV_QUIET )
+ {
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1;
+
+ /* when bit8 = 0 phase = 0x100; */
+ /* when bit8 = 1 phase = 0x200; */
+ UINT32 phase = bit8 ? 0x200 : 0x100;
+
+ /* Noise bit XOR'es phase by 0x100 */
+ /* when noisebit = 0 pass the phase from calculation above */
+ /* when noisebit = 1 phase ^= 0x100; */
+ /* in other words: phase ^= (noisebit<<8); */
+ if (noise)
+ phase ^= 0x100;
+
+ output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
+ }
+
+ /* Tom Tom (verified on real YM3812) */
+ env = volume_calc(SLOT8_1);
+ if( env < ENV_QUIET )
+ output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2;
+
+ /* Top Cymbal (verified on real YM3812) */
+ env = volume_calc(SLOT8_2);
+ if( env < ENV_QUIET )
+ {
+ /* base frequency derived from operator 1 in channel 7 */
+ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
+ unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
+ unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
+
+ unsigned char res1 = (bit2 ^ bit7) | bit3;
+
+ /* when res1 = 0 phase = 0x000 | 0x100; */
+ /* when res1 = 1 phase = 0x200 | 0x100; */
+ UINT32 phase = res1 ? 0x300 : 0x100;
+
+ /* enable gate based on frequency of operator 2 in channel 8 */
+ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
+ unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
+
+ unsigned char res2 = (bit3e ^ bit5e);
+ /* when res2 = 0 pass the phase from calculation above (res1); */
+ /* when res2 = 1 phase = 0x200 | 0x100; */
+ if (res2)
+ phase = 0x300;
+
+ output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
+ }
+
+}
+
+
+/* generic table initialize */
+static int init_tables(void)
+{
+ signed int i,x;
+ signed int n;
+ double o,m;
+
+
+ for (x=0; x<TL_RES_LEN; x++)
+ {
+ m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
+ m = floor(m);
+
+ /* we never reach (1<<16) here due to the (x+1) */
+ /* result fits within 16 bits at maximum */
+
+ n = (int)m; /* 16 bits here */
+ n >>= 4; /* 12 bits here */
+ if (n&1) /* round to nearest */
+ n = (n>>1)+1;
+ else
+ n = n>>1;
+ /* 11 bits here (rounded) */
+ n <<= 1; /* 12 bits here (as in real chip) */
+ tl_tab[ x*2 + 0 ] = n;
+ tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
+
+ for (i=1; i<12; i++)
+ {
+ tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
+ tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
+ }
+ #if 0
+ logerror("tl %04i", x*2);
+ for (i=0; i<12; i++)
+ logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] );
+ logerror("\n");
+ #endif
+ }
+ /*logerror("FMOPL.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/
+
+
+ for (i=0; i<SIN_LEN; i++)
+ {
+ /* non-standard sinus */
+ m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
+
+ /* we never reach zero here due to ((i*2)+1) */
+
+ if (m>0.0)
+ o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
+ else
+ o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
+
+ o = o / (ENV_STEP/4);
+
+ n = (int)(2.0*o);
+ if (n&1) /* round to nearest */
+ n = (n>>1)+1;
+ else
+ n = n>>1;
+
+ sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
+
+ /*logerror("FMOPL.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/
+ }
+
+ for (i=0; i<SIN_LEN; i++)
+ {
+ /* waveform 1: __ __ */
+ /* / \____/ \____*/
+ /* output only first half of the sinus waveform (positive one) */
+
+ if (i & (1<<(SIN_BITS-1)) )
+ sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
+ else
+ sin_tab[1*SIN_LEN+i] = sin_tab[i];
+
+ /* waveform 2: __ __ __ __ */
+ /* / \/ \/ \/ \*/
+ /* abs(sin) */
+
+ sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ];
+
+ /* waveform 3: _ _ _ _ */
+ /* / |_/ |_/ |_/ |_*/
+ /* abs(output only first quarter of the sinus waveform) */
+
+ if (i & (1<<(SIN_BITS-2)) )
+ sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
+ else
+ sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
+
+ /*logerror("FMOPL.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] );
+ logerror("FMOPL.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] );
+ logerror("FMOPL.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );*/
+ }
+ /*logerror("FMOPL.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/
+
+
+#ifdef SAVE_SAMPLE
+ sample[0]=fopen("sampsum.pcm","wb");
+#endif
+
+ return 1;
+}
+
+static void OPLCloseTable( void )
+{
+#ifdef SAVE_SAMPLE
+ fclose(sample[0]);
+#endif
+}
+
+
+
+static void OPL_initalize(FM_OPL *OPL)
+{
+ int i;
+
+ /* frequency base */
+ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0;
+#if 0
+ OPL->rate = (double)OPL->clock / 72.0;
+ OPL->freqbase = 1.0;
+#endif
+
+ /*logerror("freqbase=%f\n", OPL->freqbase);*/
+
+ /* Timer base time */
+ OPL->TimerBase = attotime_mul(ATTOTIME_IN_HZ(OPL->clock), 72);
+
+ /* make fnumber -> increment counter table */
+ for( i=0 ; i < 1024 ; i++ )
+ {
+ /* opn phase increment counter = 20bit */
+ OPL->fn_tab[i] = (UINT32)( (double)i * 64 * OPL->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
+#if 0
+ logerror("FMOPL.C: fn_tab[%4i] = %08x (dec=%8i)\n",
+ i, OPL->fn_tab[i]>>6, OPL->fn_tab[i]>>6 );
+#endif
+ }
+
+#if 0
+ for( i=0 ; i < 16 ; i++ )
+ {
+ logerror("FMOPL.C: sl_tab[%i] = %08x\n",
+ i, sl_tab[i] );
+ }
+ for( i=0 ; i < 8 ; i++ )
+ {
+ int j;
+ logerror("FMOPL.C: ksl_tab[oct=%2i] =",i);
+ for (j=0; j<16; j++)
+ {
+ logerror("%08x ", ksl_tab[i*16+j] );
+ }
+ logerror("\n");
+ }
+#endif
+
+
+ /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
+ /* One entry from LFO_AM_TABLE lasts for 64 samples */
+ OPL->lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * OPL->freqbase;
+
+ /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
+ OPL->lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * OPL->freqbase;
+
+ /*logerror ("OPL->lfo_am_inc = %8x ; OPL->lfo_pm_inc = %8x\n", OPL->lfo_am_inc, OPL->lfo_pm_inc);*/
+
+ /* Noise generator: a step takes 1 sample */
+ OPL->noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * OPL->freqbase;
+
+ OPL->eg_timer_add = (1<<EG_SH) * OPL->freqbase;
+ OPL->eg_timer_overflow = ( 1 ) * (1<<EG_SH);
+ /*logerror("OPLinit eg_timer_add=%8x eg_timer_overflow=%8x\n", OPL->eg_timer_add, OPL->eg_timer_overflow);*/
+
+}
+
+INLINE void FM_KEYON(OPL_SLOT *SLOT, UINT32 key_set)
+{
+ if( !SLOT->key )
+ {
+ /* restart Phase Generator */
+ SLOT->Cnt = 0;
+ /* phase -> Attack */
+ SLOT->state = EG_ATT;
+ }
+ SLOT->key |= key_set;
+}
+
+INLINE void FM_KEYOFF(OPL_SLOT *SLOT, UINT32 key_clr)
+{
+ if( SLOT->key )
+ {
+ SLOT->key &= key_clr;
+
+ if( !SLOT->key )
+ {
+ /* phase -> Release */
+ if (SLOT->state>EG_REL)
+ SLOT->state = EG_REL;
+ }
+ }
+}
+
+/* update phase increment counter of operator (also update the EG rates if necessary) */
+INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
+{
+ int ksr;
+
+ /* (frequency) phase increment counter */
+ SLOT->Incr = CH->fc * SLOT->mul;
+ ksr = CH->kcode >> SLOT->KSR;
+
+ if( SLOT->ksr != ksr )
+ {
+ SLOT->ksr = ksr;
+
+ /* calculate envelope generator rates */
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+ }
+}
+
+/* set multi,am,vib,EG-TYP,KSR,mul */
+INLINE void set_mul(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->mul = mul_tab[v&0x0f];
+ SLOT->KSR = (v&0x10) ? 0 : 2;
+ SLOT->eg_type = (v&0x20);
+ SLOT->vib = (v&0x40);
+ SLOT->AMmask = (v&0x80) ? ~0 : 0;
+ CALC_FCSLOT(CH,SLOT);
+}
+
+/* set ksl & tl */
+INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+ int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
+
+ SLOT->ksl = ksl ? 3-ksl : 31;
+ SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
+
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+}
+
+/* set attack rate & decay rate */
+INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
+
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+
+ SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+}
+
+/* set sustain level & release rate */
+INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
+{
+ OPL_CH *CH = &OPL->P_CH[slot/2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot&1];
+
+ SLOT->sl = sl_tab[ v>>4 ];
+
+ SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+}
+
+
+/* write a value v to register r on OPL chip */
+static void OPLWriteReg(FM_OPL *OPL, int r, int v)
+{
+ OPL_CH *CH;
+ int slot;
+ int block_fnum;
+
+
+ /* adjust bus to 8 bits */
+ r &= 0xff;
+ v &= 0xff;
+
+#ifdef LOG_CYM_FILE
+ if ((cymfile) && (r!=0) )
+ {
+ fputc( (unsigned char)r, cymfile );
+ fputc( (unsigned char)v, cymfile );
+ }
+#endif
+
+
+ switch(r&0xe0)
+ {
+ case 0x00: /* 00-1f:control */
+ switch(r&0x1f)
+ {
+ case 0x01: /* waveform select enable */
+ if(OPL->type&OPL_TYPE_WAVESEL)
+ {
+ OPL->wavesel = v&0x20;
+ /* do not change the waveform previously selected */
+ }
+ break;
+ case 0x02: /* Timer 1 */
+ OPL->T[0] = (256-v)*4;
+ break;
+ case 0x03: /* Timer 2 */
+ OPL->T[1] = (256-v)*16;
+ break;
+ case 0x04: /* IRQ clear / mask and Timer enable */
+ if(v&0x80)
+ { /* IRQ flag clear */
+ OPL_STATUS_RESET(OPL,0x7f-0x08); /* don't reset BFRDY flag or we will have to call deltat module to set the flag */
+ }
+ else
+ { /* set IRQ mask ,timer enable*/
+ UINT8 st1 = v&1;
+ UINT8 st2 = (v>>1)&1;
+
+ /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
+ OPL_STATUS_RESET(OPL, v & (0x78-0x08) );
+ OPL_STATUSMASK_SET(OPL, (~v) & 0x78 );
+
+ /* timer 2 */
+ if(OPL->st[1] != st2)
+ {
+ attotime period = st2 ? attotime_mul(OPL->TimerBase, OPL->T[1]) : attotime_zero;
+ OPL->st[1] = st2;
+ if (OPL->timer_handler) (OPL->timer_handler)(OPL->TimerParam,1,period);
+ }
+ /* timer 1 */
+ if(OPL->st[0] != st1)
+ {
+ attotime period = st1 ? attotime_mul(OPL->TimerBase, OPL->T[0]) : attotime_zero;
+ OPL->st[0] = st1;
+ if (OPL->timer_handler) (OPL->timer_handler)(OPL->TimerParam,0,period);
+ }
+ }
+ break;
+#if BUILD_Y8950
+ case 0x06: /* Key Board OUT */
+ if(OPL->type&OPL_TYPE_KEYBOARD)
+ {
+ if(OPL->keyboardhandler_w)
+ OPL->keyboardhandler_w(OPL->keyboard_param,v);
+ else
+ logerror("Y8950: write unmapped KEYBOARD port\n");
+ }
+ break;
+ case 0x07: /* DELTA-T control 1 : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
+ if(OPL->type&OPL_TYPE_ADPCM)
+ YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
+ break;
+#endif
+ case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
+ OPL->mode = v;
+#if BUILD_Y8950
+ if(OPL->type&OPL_TYPE_ADPCM)
+ YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v&0x0f); /* mask 4 LSBs in register 08 for DELTA-T unit */
+#endif
+ break;
+
+#if BUILD_Y8950
+ case 0x09: /* START ADD */
+ case 0x0a:
+ case 0x0b: /* STOP ADD */
+ case 0x0c:
+ case 0x0d: /* PRESCALE */
+ case 0x0e:
+ case 0x0f: /* ADPCM data write */
+ case 0x10: /* DELTA-N */
+ case 0x11: /* DELTA-N */
+ case 0x12: /* ADPCM volume */
+ if(OPL->type&OPL_TYPE_ADPCM)
+ YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
+ break;
+
+ case 0x15: /* DAC data high 8 bits (F7,F6...F2) */
+ case 0x16: /* DAC data low 2 bits (F1, F0 in bits 7,6) */
+ case 0x17: /* DAC data shift (S2,S1,S0 in bits 2,1,0) */
+ logerror("FMOPL.C: DAC data register written, but not implemented reg=%02x val=%02x\n",r,v);
+ break;
+
+ case 0x18: /* I/O CTRL (Direction) */
+ if(OPL->type&OPL_TYPE_IO)
+ OPL->portDirection = v&0x0f;
+ break;
+ case 0x19: /* I/O DATA */
+ if(OPL->type&OPL_TYPE_IO)
+ {
+ OPL->portLatch = v;
+ if(OPL->porthandler_w)
+ OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
+ }
+ break;
+#endif
+ default:
+ logerror("FMOPL.C: write to unknown register: %02x\n",r);
+ break;
+ }
+ break;
+ case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_mul(OPL,slot,v);
+ break;
+ case 0x40:
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_ksl_tl(OPL,slot,v);
+ break;
+ case 0x60:
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_ar_dr(OPL,slot,v);
+ break;
+ case 0x80:
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ set_sl_rr(OPL,slot,v);
+ break;
+ case 0xa0:
+ if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */
+ {
+ OPL->lfo_am_depth = v & 0x80;
+ OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0;
+
+ OPL->rhythm = v&0x3f;
+
+ if(OPL->rhythm&0x20)
+ {
+ /* BD key on/off */
+ if(v&0x10)
+ {
+ FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2);
+ FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2);
+ }
+ else
+ {
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
+ }
+ /* HH key on/off */
+ if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2);
+ else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
+ /* SD key on/off */
+ if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2);
+ else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
+ /* TOM key on/off */
+ if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2);
+ else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
+ /* TOP-CY key on/off */
+ if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2);
+ else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
+ }
+ else
+ {
+ /* BD key off */
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
+ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
+ /* HH key off */
+ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
+ /* SD key off */
+ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
+ /* TOM key off */
+ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
+ /* TOP-CY off */
+ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
+ }
+ return;
+ }
+ /* keyon,block,fnum */
+ if( (r&0x0f) > 8) return;
+ CH = &OPL->P_CH[r&0x0f];
+ if(!(r&0x10))
+ { /* a0-a8 */
+ block_fnum = (CH->block_fnum&0x1f00) | v;
+ }
+ else
+ { /* b0-b8 */
+ block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
+
+ if(v&0x20)
+ {
+ FM_KEYON (&CH->SLOT[SLOT1], 1);
+ FM_KEYON (&CH->SLOT[SLOT2], 1);
+ }
+ else
+ {
+ FM_KEYOFF(&CH->SLOT[SLOT1],~1);
+ FM_KEYOFF(&CH->SLOT[SLOT2],~1);
+ }
+ }
+ /* update */
+ if(CH->block_fnum != block_fnum)
+ {
+ UINT8 block = block_fnum >> 10;
+
+ CH->block_fnum = block_fnum;
+
+ CH->ksl_base = ksl_tab[block_fnum>>6];
+ CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block);
+
+ /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */
+ CH->kcode = (CH->block_fnum&0x1c00)>>9;
+
+ /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */
+ /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */
+ /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */
+ if (OPL->mode&0x40)
+ CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */
+ else
+ CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */
+
+ /* refresh Total Level in both SLOTs of this channel */
+ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
+ CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
+
+ /* refresh frequency counter in both SLOTs of this channel */
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
+ }
+ break;
+ case 0xc0:
+ /* FB,C */
+ if( (r&0x0f) > 8) return;
+ CH = &OPL->P_CH[r&0x0f];
+ CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
+ CH->SLOT[SLOT1].CON = v&1;
+ CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &output[0] : &phase_modulation;
+ break;
+ case 0xe0: /* waveform select */
+ /* simply ignore write to the waveform select register if selecting not enabled in test register */
+ if(OPL->wavesel)
+ {
+ slot = slot_array[r&0x1f];
+ if(slot < 0) return;
+ CH = &OPL->P_CH[slot/2];
+
+ CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN;
+ }
+ break;
+ }
+}
+
+#ifdef LOG_CYM_FILE
+static TIMER_CALLBACK( cymfile_callback )
+{
+ if (cymfile)
+ {
+ fputc( (unsigned char)0, cymfile );
+ }
+}
+#endif
+
+/* lock/unlock for common table */
+static int OPL_LockTable(void)
+{
+ num_lock++;
+ if(num_lock>1) return 0;
+
+ /* first time */
+
+ cur_chip = NULL;
+ /* allocate total level table (128kb space) */
+ if( !init_tables() )
+ {
+ num_lock--;
+ return -1;
+ }
+
+#ifdef LOG_CYM_FILE
+ cymfile = fopen("3812_.cym","wb");
+ if (cymfile)
+ timer_pulse ( ATTOTIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/
+ else
+ logerror("Could not create file 3812_.cym\n");
+#endif
+
+ return 0;
+}
+
+static void OPL_UnLockTable(void)
+{
+ if(num_lock) num_lock--;
+ if(num_lock) return;
+
+ /* last time */
+
+ cur_chip = NULL;
+ OPLCloseTable();
+
+#ifdef LOG_CYM_FILE
+ fclose (cymfile);
+ cymfile = NULL;
+#endif
+
+}
+
+static void OPLResetChip(FM_OPL *OPL)
+{
+ int c,s;
+ int i;
+
+ OPL->eg_timer = 0;
+ OPL->eg_cnt = 0;
+
+ OPL->noise_rng = 1; /* noise shift register */
+ OPL->mode = 0; /* normal mode */
+ OPL_STATUS_RESET(OPL,0x7f);
+
+ /* reset with register write */
+ OPLWriteReg(OPL,0x01,0); /* wavesel disable */
+ OPLWriteReg(OPL,0x02,0); /* Timer1 */
+ OPLWriteReg(OPL,0x03,0); /* Timer2 */
+ OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
+ for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
+
+ /* reset operator parameters */
+ for( c = 0 ; c < 9 ; c++ )
+ {
+ OPL_CH *CH = &OPL->P_CH[c];
+ for(s = 0 ; s < 2 ; s++ )
+ {
+ /* wave table */
+ CH->SLOT[s].wavetable = 0;
+ CH->SLOT[s].state = EG_OFF;
+ CH->SLOT[s].volume = MAX_ATT_INDEX;
+ }
+ }
+#if BUILD_Y8950
+ if(OPL->type&OPL_TYPE_ADPCM)
+ {
+ YM_DELTAT *DELTAT = OPL->deltat;
+
+ DELTAT->freqbase = OPL->freqbase;
+ DELTAT->output_pointer = &output_deltat[0];
+ DELTAT->portshift = 5;
+ DELTAT->output_range = 1<<23;
+ YM_DELTAT_ADPCM_Reset(DELTAT,0,YM_DELTAT_EMULATION_MODE_NORMAL);
+ }
+#endif
+}
+
+
+static void OPL_postload(void *param)
+{
+ FM_OPL *OPL = (FM_OPL *)param;
+ int slot, ch;
+
+ for( ch=0 ; ch < 9 ; ch++ )
+ {
+ OPL_CH *CH = &OPL->P_CH[ch];
+
+ /* Look up key scale level */
+ UINT32 block_fnum = CH->block_fnum;
+ CH->ksl_base = ksl_tab[block_fnum >> 6];
+ CH->fc = OPL->fn_tab[block_fnum & 0x03ff] >> (7 - (block_fnum >> 10));
+
+ for( slot=0 ; slot < 2 ; slot++ )
+ {
+ OPL_SLOT *SLOT = &CH->SLOT[slot];
+
+ /* Calculate key scale rate */
+ SLOT->ksr = CH->kcode >> SLOT->KSR;
+
+ /* Calculate attack, decay and release rates */
+ if ((SLOT->ar + SLOT->ksr) < 16+62)
+ {
+ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
+ SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
+ }
+ else
+ {
+ SLOT->eg_sh_ar = 0;
+ SLOT->eg_sel_ar = 13*RATE_STEPS;
+ }
+ SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+ SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
+ SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+
+ /* Calculate phase increment */
+ SLOT->Incr = CH->fc * SLOT->mul;
+
+ /* Total level */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
+
+ /* Connect output */
+ SLOT->connect1 = SLOT->CON ? &output[0] : &phase_modulation;
+ }
+ }
+#if BUILD_Y8950
+ if ( (OPL->type & OPL_TYPE_ADPCM) && (OPL->deltat) )
+ {
+ // We really should call the postlod function for the YM_DELTAT, but it's hard without registers
+ // (see the way the YM2610 does it)
+ //YM_DELTAT_postload(OPL->deltat, REGS);
+ }
+#endif
+}
+
+
+static void OPLsave_state_channel(const char *name, int num, OPL_CH *CH)
+{
+ int slot, ch;
+ char state_name[20];
+ static const char slot_array[2] = { 1, 2 };
+
+ for( ch=0 ; ch < 9 ; ch++, CH++ )
+ {
+ /* channel */
+ sprintf(state_name, "%s.CH%d", name,ch);
+ state_save_register_item(state_name, num, CH->block_fnum);
+ state_save_register_item(state_name, num, CH->kcode);
+ /* slots */
+ for( slot=0 ; slot < 2 ; slot++ )
+ {
+ OPL_SLOT *SLOT = &CH->SLOT[slot];
+
+ sprintf(state_name, "%s.CH%d.SLOT%d", name, ch, slot_array[slot]);
+
+ state_save_register_item(state_name, num, SLOT->ar);
+ state_save_register_item(state_name, num, SLOT->dr);
+ state_save_register_item(state_name, num, SLOT->rr);
+ state_save_register_item(state_name, num, SLOT->KSR);
+ state_save_register_item(state_name, num, SLOT->ksl);
+ state_save_register_item(state_name, num, SLOT->mul);
+
+ state_save_register_item(state_name, num, SLOT->Cnt);
+ state_save_register_item(state_name, num, SLOT->FB);
+ state_save_register_item_array(state_name, num, SLOT->op1_out);
+ state_save_register_item(state_name, num, SLOT->CON);
+
+ state_save_register_item(state_name, num, SLOT->eg_type);
+ state_save_register_item(state_name, num, SLOT->state);
+ state_save_register_item(state_name, num, SLOT->TL);
+ state_save_register_item(state_name, num, SLOT->volume);
+ state_save_register_item(state_name, num, SLOT->sl);
+ state_save_register_item(state_name, num, SLOT->key);
+
+ state_save_register_item(state_name, num, SLOT->AMmask);
+ state_save_register_item(state_name, num, SLOT->vib);
+
+ state_save_register_item(state_name, num, SLOT->wavetable);
+ }
+ }
+}
+
+
+/* Register savestate for a virtual YM3812/YM3526Y8950 */
+
+static void OPL_save_state(FM_OPL *OPL, const char *statename, int index)
+{
+ OPLsave_state_channel(statename, index, OPL->P_CH);
+
+ state_save_register_item(statename, index, OPL->eg_cnt);
+ state_save_register_item(statename, index, OPL->eg_timer);
+
+ state_save_register_item(statename, index, OPL->rhythm);
+
+ state_save_register_item(statename, index, OPL->lfo_am_depth);
+ state_save_register_item(statename, index, OPL->lfo_pm_depth_range);
+ state_save_register_item(statename, index, OPL->lfo_am_cnt);
+ state_save_register_item(statename, index, OPL->lfo_pm_cnt);
+
+ state_save_register_item(statename, index, OPL->noise_rng);
+ state_save_register_item(statename, index, OPL->noise_p);
+
+ if( OPL->type & OPL_TYPE_WAVESEL )
+ {
+ state_save_register_item(statename, index, OPL->wavesel);
+ }
+
+ state_save_register_item_array(statename, index, OPL->T);
+ state_save_register_item_array(statename, index, OPL->st);
+
+#if BUILD_Y8950
+ if ( (OPL->type & OPL_TYPE_ADPCM) && (OPL->deltat) )
+ {
+ YM_DELTAT_savestate(statename, index, OPL->deltat);
+ }
+
+ if ( OPL->type & OPL_TYPE_IO )
+ {
+ state_save_register_item(statename, index, OPL->portDirection);
+ state_save_register_item(statename, index, OPL->portLatch);
+ }
+#endif
+
+ state_save_register_item(statename, index, OPL->address);
+ state_save_register_item(statename, index, OPL->status);
+ state_save_register_item(statename, index, OPL->statusmask);
+ state_save_register_item(statename, index, OPL->mode);
+
+ state_save_register_func_postload_ptr(OPL_postload, OPL);
+}
+
+
+/* Create one of virtual YM3812/YM3526/Y8950 */
+/* 'clock' is chip clock in Hz */
+/* 'rate' is sampling rate */
+static FM_OPL *OPLCreate(int type, UINT32 clock, UINT32 rate)
+{
+ char *ptr;
+ FM_OPL *OPL;
+ int state_size;
+
+ if (OPL_LockTable() ==-1) return NULL;
+
+ /* calculate OPL state size */
+ state_size = sizeof(FM_OPL);
+
+#if BUILD_Y8950
+ if (type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
+#endif
+
+ /* allocate memory block */
+ ptr = malloc(state_size);
+
+ if (ptr==NULL)
+ return NULL;
+
+ /* clear */
+ memset(ptr,0,state_size);
+
+ OPL = (FM_OPL *)ptr;
+
+ ptr += sizeof(FM_OPL);
+
+#if BUILD_Y8950
+ if (type&OPL_TYPE_ADPCM)
+ {
+ OPL->deltat = (YM_DELTAT *)ptr;
+ }
+ ptr += sizeof(YM_DELTAT);
+#endif
+
+ OPL->type = type;
+ OPL->clock = clock;
+ OPL->rate = rate;
+
+ /* init global tables */
+ OPL_initalize(OPL);
+
+ return OPL;
+}
+
+/* Destroy one of virtual YM3812 */
+static void OPLDestroy(FM_OPL *OPL)
+{
+ OPL_UnLockTable();
+ free(OPL);
+}
+
+/* Optional handlers */
+
+static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER timer_handler,void *param)
+{
+ OPL->timer_handler = timer_handler;
+ OPL->TimerParam = param;
+}
+static void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,void *param)
+{
+ OPL->IRQHandler = IRQHandler;
+ OPL->IRQParam = param;
+}
+static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,void *param)
+{
+ OPL->UpdateHandler = UpdateHandler;
+ OPL->UpdateParam = param;
+}
+
+static int OPLWrite(FM_OPL *OPL,int a,int v)
+{
+ if( !(a&1) )
+ { /* address port */
+ OPL->address = v & 0xff;
+ }
+ else
+ { /* data port */
+ if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
+ OPLWriteReg(OPL,OPL->address,v);
+ }
+ return OPL->status>>7;
+}
+
+static unsigned char OPLRead(FM_OPL *OPL,int a)
+{
+ if( !(a&1) )
+ {
+ /* status port */
+
+ #if BUILD_Y8950
+
+ if(OPL->type&OPL_TYPE_ADPCM) /* Y8950 */
+ {
+ return (OPL->status & (OPL->statusmask|0x80)) | (OPL->deltat->PCM_BSY&1);
+ }
+
+ #endif
+
+ /* OPL and OPL2 */
+ return OPL->status & (OPL->statusmask|0x80);
+ }
+
+#if BUILD_Y8950
+ /* data port */
+ switch(OPL->address)
+ {
+ case 0x05: /* KeyBoard IN */
+ if(OPL->type&OPL_TYPE_KEYBOARD)
+ {
+ if(OPL->keyboardhandler_r)
+ return OPL->keyboardhandler_r(OPL->keyboard_param);
+ else
+ logerror("Y8950: read unmapped KEYBOARD port\n");
+ }
+ return 0;
+
+ case 0x0f: /* ADPCM-DATA */
+ if(OPL->type&OPL_TYPE_ADPCM)
+ {
+ UINT8 val;
+
+ val = YM_DELTAT_ADPCM_Read(OPL->deltat);
+ /*logerror("Y8950: read ADPCM value read=%02x\n",val);*/
+ return val;
+ }
+ return 0;
+
+ case 0x19: /* I/O DATA */
+ if(OPL->type&OPL_TYPE_IO)
+ {
+ if(OPL->porthandler_r)
+ return OPL->porthandler_r(OPL->port_param);
+ else
+ logerror("Y8950:read unmapped I/O port\n");
+ }
+ return 0;
+ case 0x1a: /* PCM-DATA */
+ if(OPL->type&OPL_TYPE_ADPCM)
+ {
+ logerror("Y8950 A/D convertion is accessed but not implemented !\n");
+ return 0x80; /* 2's complement PCM data - result from A/D convertion */
+ }
+ return 0;
+ }
+#endif
+
+ return 0xff;
+}
+
+/* CSM Key Controll */
+INLINE void CSMKeyControll(OPL_CH *CH)
+{
+ FM_KEYON (&CH->SLOT[SLOT1], 4);
+ FM_KEYON (&CH->SLOT[SLOT2], 4);
+
+ /* The key off should happen exactly one sample later - not implemented correctly yet */
+
+ FM_KEYOFF(&CH->SLOT[SLOT1], ~4);
+ FM_KEYOFF(&CH->SLOT[SLOT2], ~4);
+}
+
+
+static int OPLTimerOver(FM_OPL *OPL,int c)
+{
+ if( c )
+ { /* Timer B */
+ OPL_STATUS_SET(OPL,0x20);
+ }
+ else
+ { /* Timer A */
+ OPL_STATUS_SET(OPL,0x40);
+ /* CSM mode key,TL controll */
+ if( OPL->mode & 0x80 )
+ { /* CSM mode total level latch and auto key on */
+ int ch;
+ if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
+ for(ch=0; ch<9; ch++)
+ CSMKeyControll( &OPL->P_CH[ch] );
+ }
+ }
+ /* reload timer */
+ if (OPL->timer_handler) (OPL->timer_handler)(OPL->TimerParam,c,attotime_mul(OPL->TimerBase, OPL->T[c]));
+ return OPL->status>>7;
+}
+
+
+#define MAX_OPL_CHIPS 2
+
+
+#if (BUILD_YM3812)
+
+void * YM3812Init(int sndindex, UINT32 clock, UINT32 rate)
+{
+ /* emulator create */
+ FM_OPL *YM3812 = OPLCreate(OPL_TYPE_YM3812,clock,rate);
+ if (YM3812)
+ {
+ OPL_save_state(YM3812, "YM3812", sndindex);
+ YM3812ResetChip(YM3812);
+ }
+ return YM3812;
+}
+
+void YM3812Shutdown(void *chip)
+{
+ FM_OPL *YM3812 = chip;
+
+ /* emulator shutdown */
+ OPLDestroy(YM3812);
+}
+void YM3812ResetChip(void *chip)
+{
+ FM_OPL *YM3812 = chip;
+ OPLResetChip(YM3812);
+}
+
+int YM3812Write(void *chip, int a, int v)
+{
+ FM_OPL *YM3812 = chip;
+ return OPLWrite(YM3812, a, v);
+}
+
+unsigned char YM3812Read(void *chip, int a)
+{
+ FM_OPL *YM3812 = chip;
+ /* YM3812 always returns bit2 and bit1 in HIGH state */
+ return OPLRead(YM3812, a) | 0x06 ;
+}
+int YM3812TimerOver(void *chip, int c)
+{
+ FM_OPL *YM3812 = chip;
+ return OPLTimerOver(YM3812, c);
+}
+
+void YM3812SetTimerHandler(void *chip, OPL_TIMERHANDLER timer_handler, void *param)
+{
+ FM_OPL *YM3812 = chip;
+ OPLSetTimerHandler(YM3812, timer_handler, param);
+}
+void YM3812SetIRQHandler(void *chip,OPL_IRQHANDLER IRQHandler,void *param)
+{
+ FM_OPL *YM3812 = chip;
+ OPLSetIRQHandler(YM3812, IRQHandler, param);
+}
+void YM3812SetUpdateHandler(void *chip,OPL_UPDATEHANDLER UpdateHandler,void *param)
+{
+ FM_OPL *YM3812 = chip;
+ OPLSetUpdateHandler(YM3812, UpdateHandler, param);
+}
+
+
+/*
+** Generate samples for one of the YM3812's
+**
+** 'which' is the virtual YM3812 number
+** '*buffer' is the output buffer pointer
+** 'length' is the number of samples that should be generated
+*/
+void YM3812UpdateOne(void *chip, OPLSAMPLE *buffer, int length)
+{
+ FM_OPL *OPL = chip;
+ UINT8 rhythm = OPL->rhythm&0x20;
+ OPLSAMPLE *buf = buffer;
+ int i;
+
+ if( (void *)OPL != cur_chip ){
+ cur_chip = (void *)OPL;
+ /* rhythm slots */
+ SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
+ }
+ for( i=0; i < length ; i++ )
+ {
+ int lt;
+
+ output[0] = 0;
+
+ advance_lfo(OPL);
+
+ /* FM part */
+ OPL_CALC_CH(&OPL->P_CH[0]);
+ OPL_CALC_CH(&OPL->P_CH[1]);
+ OPL_CALC_CH(&OPL->P_CH[2]);
+ OPL_CALC_CH(&OPL->P_CH[3]);
+ OPL_CALC_CH(&OPL->P_CH[4]);
+ OPL_CALC_CH(&OPL->P_CH[5]);
+
+ if(!rhythm)
+ {
+ OPL_CALC_CH(&OPL->P_CH[6]);
+ OPL_CALC_CH(&OPL->P_CH[7]);
+ OPL_CALC_CH(&OPL->P_CH[8]);
+ }
+ else /* Rhythm part */
+ {
+ OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
+ }
+
+ lt = output[0];
+
+ lt >>= FINAL_SH;
+
+ /* limit check */
+ lt = limit( lt , MAXOUT, MINOUT );
+
+ #ifdef SAVE_SAMPLE
+ if (which==0)
+ {
+ SAVE_ALL_CHANNELS
+ }
+ #endif
+
+ /* store to sound buffer */
+ buf[i] = lt;
+
+ advance(OPL);
+ }
+
+}
+#endif /* BUILD_YM3812 */
+
+
+
+#if (BUILD_YM3526)
+
+void *YM3526Init(int sndindex, UINT32 clock, UINT32 rate)
+{
+ /* emulator create */
+ FM_OPL *YM3526 = OPLCreate(OPL_TYPE_YM3526,clock,rate);
+ if (YM3526)
+ {
+ OPL_save_state(YM3526, "YM3526", sndindex);
+ YM3526ResetChip(YM3526);
+ }
+ return YM3526;
+}
+
+void YM3526Shutdown(void *chip)
+{
+ FM_OPL *YM3526 = chip;
+ /* emulator shutdown */
+ OPLDestroy(YM3526);
+}
+void YM3526ResetChip(void *chip)
+{
+ FM_OPL *YM3526 = chip;
+ OPLResetChip(YM3526);
+}
+
+int YM3526Write(void *chip, int a, int v)
+{
+ FM_OPL *YM3526 = chip;
+ return OPLWrite(YM3526, a, v);
+}
+
+unsigned char YM3526Read(void *chip, int a)
+{
+ FM_OPL *YM3526 = chip;
+ /* YM3526 always returns bit2 and bit1 in HIGH state */
+ return OPLRead(YM3526, a) | 0x06 ;
+}
+int YM3526TimerOver(void *chip, int c)
+{
+ FM_OPL *YM3526 = chip;
+ return OPLTimerOver(YM3526, c);
+}
+
+void YM3526SetTimerHandler(void *chip, OPL_TIMERHANDLER timer_handler, void *param)
+{
+ FM_OPL *YM3526 = chip;
+ OPLSetTimerHandler(YM3526, timer_handler, param);
+}
+void YM3526SetIRQHandler(void *chip,OPL_IRQHANDLER IRQHandler,void *param)
+{
+ FM_OPL *YM3526 = chip;
+ OPLSetIRQHandler(YM3526, IRQHandler, param);
+}
+void YM3526SetUpdateHandler(void *chip,OPL_UPDATEHANDLER UpdateHandler,void *param)
+{
+ FM_OPL *YM3526 = chip;
+ OPLSetUpdateHandler(YM3526, UpdateHandler, param);
+}
+
+
+/*
+** Generate samples for one of the YM3526's
+**
+** 'which' is the virtual YM3526 number
+** '*buffer' is the output buffer pointer
+** 'length' is the number of samples that should be generated
+*/
+void YM3526UpdateOne(void *chip, OPLSAMPLE *buffer, int length)
+{
+ FM_OPL *OPL = chip;
+ UINT8 rhythm = OPL->rhythm&0x20;
+ OPLSAMPLE *buf = buffer;
+ int i;
+
+ if( (void *)OPL != cur_chip ){
+ cur_chip = (void *)OPL;
+ /* rhythm slots */
+ SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
+ }
+ for( i=0; i < length ; i++ )
+ {
+ int lt;
+
+ output[0] = 0;
+
+ advance_lfo(OPL);
+
+ /* FM part */
+ OPL_CALC_CH(&OPL->P_CH[0]);
+ OPL_CALC_CH(&OPL->P_CH[1]);
+ OPL_CALC_CH(&OPL->P_CH[2]);
+ OPL_CALC_CH(&OPL->P_CH[3]);
+ OPL_CALC_CH(&OPL->P_CH[4]);
+ OPL_CALC_CH(&OPL->P_CH[5]);
+
+ if(!rhythm)
+ {
+ OPL_CALC_CH(&OPL->P_CH[6]);
+ OPL_CALC_CH(&OPL->P_CH[7]);
+ OPL_CALC_CH(&OPL->P_CH[8]);
+ }
+ else /* Rhythm part */
+ {
+ OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
+ }
+
+ lt = output[0];
+
+ lt >>= FINAL_SH;
+
+ /* limit check */
+ lt = limit( lt , MAXOUT, MINOUT );
+
+ #ifdef SAVE_SAMPLE
+ if (which==0)
+ {
+ SAVE_ALL_CHANNELS
+ }
+ #endif
+
+ /* store to sound buffer */
+ buf[i] = lt;
+
+ advance(OPL);
+ }
+
+}
+#endif /* BUILD_YM3526 */
+
+
+
+
+#if BUILD_Y8950
+
+static void Y8950_deltat_status_set(void *chip, UINT8 changebits)
+{
+ FM_OPL *Y8950 = chip;
+ OPL_STATUS_SET(Y8950, changebits);
+}
+static void Y8950_deltat_status_reset(void *chip, UINT8 changebits)
+{
+ FM_OPL *Y8950 = chip;
+ OPL_STATUS_RESET(Y8950, changebits);
+}
+
+void *Y8950Init(int sndindex, UINT32 clock, UINT32 rate)
+{
+ /* emulator create */
+ FM_OPL *Y8950 = OPLCreate(OPL_TYPE_Y8950,clock,rate);
+ if (Y8950)
+ {
+ Y8950->deltat->status_set_handler = Y8950_deltat_status_set;
+ Y8950->deltat->status_reset_handler = Y8950_deltat_status_reset;
+ Y8950->deltat->status_change_which_chip = Y8950;
+ Y8950->deltat->status_change_EOS_bit = 0x10; /* status flag: set bit4 on End Of Sample */
+ Y8950->deltat->status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY (End Of: ADPCM analysis/synthesis, memory reading/writing) */
+
+ /*Y8950->deltat->write_time = 10.0 / clock;*/ /* a single byte write takes 10 cycles of main clock */
+ /*Y8950->deltat->read_time = 8.0 / clock;*/ /* a single byte read takes 8 cycles of main clock */
+ /* reset */
+ OPL_save_state(Y8950, "Y8950", sndindex);
+ Y8950ResetChip(Y8950);
+ }
+
+ return Y8950;
+}
+
+void Y8950Shutdown(void *chip)
+{
+ FM_OPL *Y8950 = chip;
+ /* emulator shutdown */
+ OPLDestroy(Y8950);
+}
+void Y8950ResetChip(void *chip)
+{
+ FM_OPL *Y8950 = chip;
+ OPLResetChip(Y8950);
+}
+
+int Y8950Write(void *chip, int a, int v)
+{
+ FM_OPL *Y8950 = chip;
+ return OPLWrite(Y8950, a, v);
+}
+
+unsigned char Y8950Read(void *chip, int a)
+{
+ FM_OPL *Y8950 = chip;
+ return OPLRead(Y8950, a);
+}
+int Y8950TimerOver(void *chip, int c)
+{
+ FM_OPL *Y8950 = chip;
+ return OPLTimerOver(Y8950, c);
+}
+
+void Y8950SetTimerHandler(void *chip, OPL_TIMERHANDLER timer_handler, void *param)
+{
+ FM_OPL *Y8950 = chip;
+ OPLSetTimerHandler(Y8950, timer_handler, param);
+}
+void Y8950SetIRQHandler(void *chip,OPL_IRQHANDLER IRQHandler,void *param)
+{
+ FM_OPL *Y8950 = chip;
+ OPLSetIRQHandler(Y8950, IRQHandler, param);
+}
+void Y8950SetUpdateHandler(void *chip,OPL_UPDATEHANDLER UpdateHandler,void *param)
+{
+ FM_OPL *Y8950 = chip;
+ OPLSetUpdateHandler(Y8950, UpdateHandler, param);
+}
+
+void Y8950SetDeltaTMemory(void *chip, void * deltat_mem_ptr, int deltat_mem_size )
+{
+ FM_OPL *OPL = chip;
+ OPL->deltat->memory = (UINT8 *)(deltat_mem_ptr);
+ OPL->deltat->memory_size = deltat_mem_size;
+}
+
+/*
+** Generate samples for one of the Y8950's
+**
+** 'which' is the virtual Y8950 number
+** '*buffer' is the output buffer pointer
+** 'length' is the number of samples that should be generated
+*/
+void Y8950UpdateOne(void *chip, OPLSAMPLE *buffer, int length)
+{
+ int i;
+ FM_OPL *OPL = chip;
+ UINT8 rhythm = OPL->rhythm&0x20;
+ YM_DELTAT *DELTAT = OPL->deltat;
+ OPLSAMPLE *buf = buffer;
+
+ if( (void *)OPL != cur_chip ){
+ cur_chip = (void *)OPL;
+ /* rhythm slots */
+ SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
+
+ }
+ for( i=0; i < length ; i++ )
+ {
+ int lt;
+
+ output[0] = 0;
+ output_deltat[0] = 0;
+
+ advance_lfo(OPL);
+
+ /* deltaT ADPCM */
+ if( DELTAT->portstate&0x80 )
+ YM_DELTAT_ADPCM_CALC(DELTAT);
+
+ /* FM part */
+ OPL_CALC_CH(&OPL->P_CH[0]);
+ OPL_CALC_CH(&OPL->P_CH[1]);
+ OPL_CALC_CH(&OPL->P_CH[2]);
+ OPL_CALC_CH(&OPL->P_CH[3]);
+ OPL_CALC_CH(&OPL->P_CH[4]);
+ OPL_CALC_CH(&OPL->P_CH[5]);
+
+ if(!rhythm)
+ {
+ OPL_CALC_CH(&OPL->P_CH[6]);
+ OPL_CALC_CH(&OPL->P_CH[7]);
+ OPL_CALC_CH(&OPL->P_CH[8]);
+ }
+ else /* Rhythm part */
+ {
+ OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
+ }
+
+ lt = output[0] + (output_deltat[0]>>11);
+
+ lt >>= FINAL_SH;
+
+ /* limit check */
+ lt = limit( lt , MAXOUT, MINOUT );
+
+ #ifdef SAVE_SAMPLE
+ if (which==0)
+ {
+ SAVE_ALL_CHANNELS
+ }
+ #endif
+
+ /* store to sound buffer */
+ buf[i] = lt;
+
+ advance(OPL);
+ }
+
+}
+
+void Y8950SetPortHandler(void *chip,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,void * param)
+{
+ FM_OPL *OPL = chip;
+ OPL->porthandler_w = PortHandler_w;
+ OPL->porthandler_r = PortHandler_r;
+ OPL->port_param = param;
+}
+
+void Y8950SetKeyboardHandler(void *chip,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,void * param)
+{
+ FM_OPL *OPL = chip;
+ OPL->keyboardhandler_w = KeyboardHandler_w;
+ OPL->keyboardhandler_r = KeyboardHandler_r;
+ OPL->keyboard_param = param;
+}
+
+#endif
+