summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/sound/ym2413.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/devices/sound/ym2413.cpp')
-rw-r--r--src/devices/sound/ym2413.cpp1764
1 files changed, 0 insertions, 1764 deletions
diff --git a/src/devices/sound/ym2413.cpp b/src/devices/sound/ym2413.cpp
deleted file mode 100644
index 755e66ea629..00000000000
--- a/src/devices/sound/ym2413.cpp
+++ /dev/null
@@ -1,1764 +0,0 @@
-// license:GPL-2.0+
-// copyright-holders:Jarek Burczynski, Ernesto Corvi
-/*
-**
-** File: ym2413.c - software implementation of YM2413
-** FM sound generator type OPLL
-**
-** Copyright Jarek Burczynski
-**
-** Version 1.0
-**
-
- Features as listed in LSI-212413A2 data sheet:
- 1. FM Sound Generator for real sound creation.
- 2. Two Selectable modes: 9 simultaneous sounds or 6 melody sounds plus 5 rhythm sounds
- (different tones can be used together in either case).
- 3. Built-in Instruments data (15 melody tones, 5 rhythm tones, "CAPTAIN and TELETEXT applicalbe tones).
- 4. Built-in DA Converter.
- 5. Built-in Quartz Oscillator.
- 6. Built-in Vibrato Oscillator/AM Oscillator
- 7. TTL Compatible Input.
- 8. Si-Gate NMOS LSI
- 9. A single 5V power source.
-
-to do:
-
-- make sure of the sinus amplitude bits
-
-- make sure of the EG resolution bits (looks like the biggest
- modulation index generated by the modulator is 123, 124 = no modulation)
-- find proper algorithm for attack phase of EG
-
-- tune up instruments ROM
-
-- support sample replay in test mode (it is NOT as simple as setting bit 0
- in register 0x0f and using register 0x10 for sample data).
- Which games use this feature ?
-
-
-*/
-
-#include "emu.h"
-#include "ym2413.h"
-
-#include <algorithm>
-
-#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
-#define EG_SH 16 /* 16.16 fixed point (EG timing) */
-#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
-
-#define FREQ_MASK ((1<<FREQ_SH)-1)
-
-/* envelope output entries */
-#define ENV_BITS 10
-#define ENV_LEN (1<<ENV_BITS)
-#define ENV_STEP (128.0/ENV_LEN)
-
-#define MAX_ATT_INDEX ((1<<(ENV_BITS-2))-1) /*255*/
-#define MIN_ATT_INDEX (0)
-
-/* register number to channel number , slot offset */
-#define SLOT1 0
-#define SLOT2 1
-
-/* Envelope Generator phases */
-
-#define EG_DMP 5
-#define EG_ATT 4
-#define EG_DEC 3
-#define EG_SUS 2
-#define EG_REL 1
-#define EG_OFF 0
-
-/* key scale level */
-/* table is 3dB/octave, DV converts this into 6dB/octave */
-/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
-#define DV (0.1875/1.0)
-const double ym2413_device::ksl_tab[8*16] =
-{
- /* OCT 0 */
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- /* OCT 1 */
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
- 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
- /* OCT 2 */
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
- 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
- 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
- /* OCT 3 */
- 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
- 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
- 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
- 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
- /* OCT 4 */
- 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
- 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
- 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
- 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
- /* OCT 5 */
- 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
- 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
- 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
- 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
- /* OCT 6 */
- 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
- 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
- 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
- 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
- /* OCT 7 */
- 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
- 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
- 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
- 19.875/DV,20.250/DV,20.625/DV,21.000/DV
-};
-#undef DV
-
-/* 0 / 1.5 / 3.0 / 6.0 dB/OCT, confirmed on a real YM2413 (the application manual is incorrect) */
-const uint32_t ym2413_device::ksl_shift[4] = { 31, 2, 1, 0 };
-
-
-/* sustain level table (3dB per step) */
-/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,45 (dB)*/
-#define SC(db) (uint32_t) ( db * (1.0/ENV_STEP) )
-const uint32_t ym2413_device::sl_tab[16] = {
- SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
- SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(15)
-};
-#undef SC
-
-const uint8_t ym2413_device::eg_inc[15*RATE_STEPS] = {
- /*cycle:0 1 2 3 4 5 6 7*/
-
- /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
- /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
- /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
- /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
-
- /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
- /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
- /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
- /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
-
- /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
- /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
- /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
- /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
-
- /*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
- /*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
- /*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
-};
-
-
-#define O(a) (a*RATE_STEPS)
-
-/*note that there is no O(13) in this table - it's directly in the code */
-const uint8_t ym2413_device::eg_rate_select[16+64+16] = { /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
- /* 16 infinite time rates */
- O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
- O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
-
- /* rates 00-12 */
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
- O( 0),O( 1),O( 2),O( 3),
-
- /* rate 13 */
- O( 4),O( 5),O( 6),O( 7),
-
- /* rate 14 */
- O( 8),O( 9),O(10),O(11),
-
- /* rate 15 */
- O(12),O(12),O(12),O(12),
-
- /* 16 dummy rates (same as 15 3) */
- O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
- O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
-
-};
-#undef O
-
-/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
-/*shift 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0 */
-/*mask 8191, 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0 */
-
-#define O(a) (a*1)
-const uint8_t ym2413_device::eg_rate_shift[16+64+16] = { /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
- /* 16 infinite time rates */
- O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
- O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
-
- /* rates 00-12 */
- O(13),O(13),O(13),O(13),
- O(12),O(12),O(12),O(12),
- O(11),O(11),O(11),O(11),
- O(10),O(10),O(10),O(10),
- O( 9),O( 9),O( 9),O( 9),
- O( 8),O( 8),O( 8),O( 8),
- O( 7),O( 7),O( 7),O( 7),
- O( 6),O( 6),O( 6),O( 6),
- O( 5),O( 5),O( 5),O( 5),
- O( 4),O( 4),O( 4),O( 4),
- O( 3),O( 3),O( 3),O( 3),
- O( 2),O( 2),O( 2),O( 2),
- O( 1),O( 1),O( 1),O( 1),
-
- /* rate 13 */
- O( 0),O( 0),O( 0),O( 0),
-
- /* rate 14 */
- O( 0),O( 0),O( 0),O( 0),
-
- /* rate 15 */
- O( 0),O( 0),O( 0),O( 0),
-
- /* 16 dummy rates (same as 15 3) */
- O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
- O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
-};
-#undef O
-
-
-/* multiple table */
-#define ML 2
-const uint8_t ym2413_device::mul_tab[16]= {
- /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
- ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML,
- 8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML
-};
-#undef ML
-
-
-#define ENV_QUIET (TL_TAB_LEN>>5)
-
-
-/* LFO Amplitude Modulation table (verified on real YM3812)
- 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
-
- Length: 210 elements.
-
- Each of the elements has to be repeated
- exactly 64 times (on 64 consecutive samples).
- The whole table takes: 64 * 210 = 13440 samples.
-
-We use data>>1, until we find what it really is on real chip...
-
-*/
-const uint8_t ym2413_device::lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
- 0,0,0,0,0,0,0,
- 1,1,1,1,
- 2,2,2,2,
- 3,3,3,3,
- 4,4,4,4,
- 5,5,5,5,
- 6,6,6,6,
- 7,7,7,7,
- 8,8,8,8,
- 9,9,9,9,
- 10,10,10,10,
- 11,11,11,11,
- 12,12,12,12,
- 13,13,13,13,
- 14,14,14,14,
- 15,15,15,15,
- 16,16,16,16,
- 17,17,17,17,
- 18,18,18,18,
- 19,19,19,19,
- 20,20,20,20,
- 21,21,21,21,
- 22,22,22,22,
- 23,23,23,23,
- 24,24,24,24,
- 25,25,25,25,
- 26,26,26,
- 25,25,25,25,
- 24,24,24,24,
- 23,23,23,23,
- 22,22,22,22,
- 21,21,21,21,
- 20,20,20,20,
- 19,19,19,19,
- 18,18,18,18,
- 17,17,17,17,
- 16,16,16,16,
- 15,15,15,15,
- 14,14,14,14,
- 13,13,13,13,
- 12,12,12,12,
- 11,11,11,11,
- 10,10,10,10,
- 9,9,9,9,
- 8,8,8,8,
- 7,7,7,7,
- 6,6,6,6,
- 5,5,5,5,
- 4,4,4,4,
- 3,3,3,3,
- 2,2,2,2,
- 1,1,1,1
-};
-
-/* LFO Phase Modulation table (verified on real YM2413) */
-const int8_t ym2413_device::lfo_pm_table[8*8] = {
- /* FNUM2/FNUM = 0 00xxxxxx (0x0000) */
- 0, 0, 0, 0, 0, 0, 0, 0,
-
- /* FNUM2/FNUM = 0 01xxxxxx (0x0040) */
- 1, 0, 0, 0,-1, 0, 0, 0,
-
- /* FNUM2/FNUM = 0 10xxxxxx (0x0080) */
- 2, 1, 0,-1,-2,-1, 0, 1,
-
- /* FNUM2/FNUM = 0 11xxxxxx (0x00C0) */
- 3, 1, 0,-1,-3,-1, 0, 1,
-
- /* FNUM2/FNUM = 1 00xxxxxx (0x0100) */
- 4, 2, 0,-2,-4,-2, 0, 2,
-
- /* FNUM2/FNUM = 1 01xxxxxx (0x0140) */
- 5, 2, 0,-2,-5,-2, 0, 2,
-
- /* FNUM2/FNUM = 1 10xxxxxx (0x0180) */
- 6, 3, 0,-3,-6,-3, 0, 3,
-
- /* FNUM2/FNUM = 1 11xxxxxx (0x01C0) */
- 7, 3, 0,-3,-7,-3, 0, 3,
-};
-
-
-/* This is not 100% perfect yet but very close */
-/*
- - multi parameters are 100% correct (instruments and drums)
- - LFO PM and AM enable are 100% correct
- - waveform DC and DM select are 100% correct
-*/
-
-const uint8_t ym2413_device::table[19][8] = {
-/* MULT MULT modTL DcDmFb AR/DR AR/DR SL/RR SL/RR */
-/* 0 1 2 3 4 5 6 7 */
-/* These YM2413(OPLL) patch dumps are done via audio analysis (and a/b testing?) from Jarek and are known to be inaccurate */
- {0x49, 0x4c, 0x4c, 0x12, 0x00, 0x00, 0x00, 0x00 }, //0
-
- {0x61, 0x61, 0x1e, 0x17, 0xf0, 0x78, 0x00, 0x17 }, //1
- {0x13, 0x41, 0x1e, 0x0d, 0xd7, 0xf7, 0x13, 0x13 }, //2
- {0x13, 0x01, 0x99, 0x04, 0xf2, 0xf4, 0x11, 0x23 }, //3
- {0x21, 0x61, 0x1b, 0x07, 0xaf, 0x64, 0x40, 0x27 }, //4
-
-//{0x22, 0x21, 0x1e, 0x09, 0xf0, 0x76, 0x08, 0x28 }, //5
- {0x22, 0x21, 0x1e, 0x06, 0xf0, 0x75, 0x08, 0x18 }, //5
-
-//{0x31, 0x22, 0x16, 0x09, 0x90, 0x7f, 0x00, 0x08 }, //6
- {0x31, 0x22, 0x16, 0x05, 0x90, 0x71, 0x00, 0x13 }, //6
-
- {0x21, 0x61, 0x1d, 0x07, 0x82, 0x80, 0x10, 0x17 }, //7
- {0x23, 0x21, 0x2d, 0x16, 0xc0, 0x70, 0x07, 0x07 }, //8
- {0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17 }, //9
-
-//{0x61, 0x61, 0x0c, 0x08, 0x85, 0xa0, 0x79, 0x07 }, //A
- {0x61, 0x61, 0x0c, 0x18, 0x85, 0xf0, 0x70, 0x07 }, //A
-
- {0x23, 0x01, 0x07, 0x11, 0xf0, 0xa4, 0x00, 0x22 }, //B
- {0x97, 0xc1, 0x24, 0x07, 0xff, 0xf8, 0x22, 0x12 }, //C
-
-//{0x61, 0x10, 0x0c, 0x08, 0xf2, 0xc4, 0x40, 0xc8 }, //D
- {0x61, 0x10, 0x0c, 0x05, 0xf2, 0xf4, 0x40, 0x44 }, //D
-
- {0x01, 0x01, 0x55, 0x03, 0xf3, 0x92, 0xf3, 0xf3 }, //E
- {0x61, 0x41, 0x89, 0x03, 0xf1, 0xf4, 0xf0, 0x13 }, //F
-
-/* drum instruments definitions */
-/* MULTI MULTI modTL xxx AR/DR AR/DR SL/RR SL/RR */
-/* 0 1 2 3 4 5 6 7 */
-/* old dumps via audio analysis (and a/b testing?) from Jarek */
-//{0x01, 0x01, 0x16, 0x00, 0xfd, 0xf8, 0x2f, 0x6d },/* BD(multi verified, modTL verified, mod env - verified(close), carr. env verifed) */
-//{0x01, 0x01, 0x00, 0x00, 0xd8, 0xd8, 0xf9, 0xf8 },/* HH(multi verified), SD(multi not used) */
-//{0x05, 0x01, 0x00, 0x00, 0xf8, 0xba, 0x49, 0x55 },/* TOM(multi,env verified), TOP CYM(multi verified, env verified) */
-/* Drums dumped from the VRC7 using debug mode, these are likely also correct for ym2413(OPLL) but need verification */
- {0x01, 0x01, 0x18, 0x0f, 0xdf, 0xf8, 0x6a, 0x6d },/* BD */
- {0x01, 0x01, 0x00, 0x00, 0xc8, 0xd8, 0xa7, 0x68 },/* HH, SD */
- {0x05, 0x01, 0x00, 0x00, 0xf8, 0xaa, 0x59, 0x55 },/* TOM, TOP CYM */
-};
-
-// VRC7 Instruments : Dumped from internal ROM
-// reference : https://siliconpr0n.org/archive/doku.php?id=vendor:yamaha:opl2
-const uint8_t vrc7snd_device::vrc7_table[19][8] = {
-/* MULT MULT modTL DcDmFb AR/DR AR/DR SL/RR SL/RR */
-/* 0 1 2 3 4 5 6 7 */
- {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, //0 (This is the user-defined instrument, should this default to anything?)
-
- {0x03, 0x21, 0x05, 0x06, 0xe8, 0x81, 0x42, 0x27 }, //1
- {0x13, 0x41, 0x14, 0x0d, 0xd8, 0xf6, 0x23, 0x12 }, //2
- {0x11, 0x11, 0x08, 0x08, 0xfa, 0xb2, 0x20, 0x12 }, //3
- {0x31, 0x61, 0x0c, 0x07, 0xa8, 0x64, 0x61, 0x27 }, //4
- {0x32, 0x21, 0x1e, 0x06, 0xe1, 0x76, 0x01, 0x28 }, //5
- {0x02, 0x01, 0x06, 0x00, 0xa3, 0xe2, 0xf4, 0xf4 }, //6
- {0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x11, 0x07 }, //7
- {0x23, 0x21, 0x22, 0x17, 0xa2, 0x72, 0x01, 0x17 }, //8
- {0x35, 0x11, 0x25, 0x00, 0x40, 0x73, 0x72, 0x01 }, //9
- {0xb5, 0x01, 0x0f, 0x0f, 0xa8, 0xa5, 0x51, 0x02 }, //A
- {0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12 }, //B
- {0x71, 0x23, 0x11, 0x06, 0x65, 0x74, 0x18, 0x16 }, //C
- {0x01, 0x02, 0xd3, 0x05, 0xc9, 0x95, 0x03, 0x02 }, //D
- {0x61, 0x63, 0x0c, 0x00, 0x94, 0xc0, 0x33, 0xf6 }, //E
- {0x21, 0x72, 0x0d, 0x00, 0xc1, 0xd5, 0x56, 0x06 }, //F
-
-/* Drums (silent due to no RO output pin(?) on VRC7, but present internally; these are probably shared with YM2413) */
-/* MULTI MULTI modTL xxx AR/DR AR/DR SL/RR SL/RR */
-/* 0 1 2 3 4 5 6 7 */
- {0x01, 0x01, 0x18, 0x0f, 0xdf, 0xf8, 0x6a, 0x6d },/* BD */
- {0x01, 0x01, 0x00, 0x00, 0xc8, 0xd8, 0xa7, 0x68 },/* HH, SD */
- {0x05, 0x01, 0x00, 0x00, 0xf8, 0xaa, 0x59, 0x55 },/* TOM, TOP CYM */
-};
-
-/* work table */
-#define SLOT7_1 (&P_CH[7].SLOT[SLOT1])
-#define SLOT7_2 (&P_CH[7].SLOT[SLOT2])
-#define SLOT8_1 (&P_CH[8].SLOT[SLOT1])
-#define SLOT8_2 (&P_CH[8].SLOT[SLOT2])
-
-
-int ym2413_device::limit( int val, int max, int min )
-{
- if ( val > max )
- val = max;
- else if ( val < min )
- val = min;
-
- return val;
-}
-
-
-/* advance LFO to next sample */
-void ym2413_device::advance_lfo()
-{
- /* LFO */
- lfo_am_cnt += lfo_am_inc;
- if (lfo_am_cnt >= ((uint32_t)LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
- lfo_am_cnt -= ((uint32_t)LFO_AM_TAB_ELEMENTS<<LFO_SH);
-
- LFO_AM = lfo_am_table[ lfo_am_cnt >> LFO_SH ] >> 1;
-
- lfo_pm_cnt += lfo_pm_inc;
- LFO_PM = (lfo_pm_cnt>>LFO_SH) & 7;
-}
-
-/* advance to next sample */
-void ym2413_device::advance()
-{
- OPLL_CH *CH;
- OPLL_SLOT *op;
- unsigned int i;
-
- /* Envelope Generator */
- eg_timer += eg_timer_add;
-
- while (eg_timer >= eg_timer_overflow)
- {
- eg_timer -= eg_timer_overflow;
-
- eg_cnt++;
-
- for (i=0; i<9*2; i++)
- {
- CH = &P_CH[i/2];
-
- op = &CH->SLOT[i&1];
-
- switch(op->state)
- {
- case EG_DMP: /* dump phase */
- /*dump phase is performed by both operators in each channel*/
- /*when CARRIER envelope gets down to zero level,
- ** phases in BOTH opearators are reset (at the same time ?)
- */
- if ( !(eg_cnt & ((1<<op->eg_sh_dp)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_dp + ((eg_cnt>>op->eg_sh_dp)&7)];
-
- if ( op->volume >= MAX_ATT_INDEX )
- {
- op->volume = MAX_ATT_INDEX;
- op->state = EG_ATT;
- /* restart Phase Generator */
- op->phase = 0;
- }
- }
- break;
-
- case EG_ATT: /* attack phase */
- if ( !(eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
- {
- op->volume += (~op->volume *
- (eg_inc[op->eg_sel_ar + ((eg_cnt>>op->eg_sh_ar)&7)])
- ) >>2;
-
- if (op->volume <= MIN_ATT_INDEX)
- {
- op->volume = MIN_ATT_INDEX;
- op->state = EG_DEC;
- }
- }
- break;
-
- case EG_DEC: /* decay phase */
- if ( !(eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_dr + ((eg_cnt>>op->eg_sh_dr)&7)];
-
- if ( op->volume >= op->sl )
- op->state = EG_SUS;
- }
- break;
-
- case EG_SUS: /* sustain phase */
- /* this is important behaviour:
- one can change percusive/non-percussive modes on the fly and
- the chip will remain in sustain phase - verified on real YM3812 */
-
- if(op->eg_type) /* non-percussive mode (sustained tone) */
- {
- /* do nothing */
- }
- else /* percussive mode */
- {
- /* during sustain phase chip adds Release Rate (in percussive mode) */
- if ( !(eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_rr + ((eg_cnt>>op->eg_sh_rr)&7)];
-
- if ( op->volume >= MAX_ATT_INDEX )
- op->volume = MAX_ATT_INDEX;
- }
- /* else do nothing in sustain phase */
- }
- break;
-
- case EG_REL: /* release phase */
- /* exclude modulators in melody channels from performing anything in this mode*/
- /* allowed are only carriers in melody mode and rhythm slots in rhythm mode */
-
- /*This table shows which operators and on what conditions are allowed to perform EG_REL:
- (a) - always perform EG_REL
- (n) - never perform EG_REL
- (r) - perform EG_REL in Rhythm mode ONLY
- 0: 0 (n), 1 (a)
- 1: 2 (n), 3 (a)
- 2: 4 (n), 5 (a)
- 3: 6 (n), 7 (a)
- 4: 8 (n), 9 (a)
- 5: 10(n), 11(a)
- 6: 12(r), 13(a)
- 7: 14(r), 15(a)
- 8: 16(r), 17(a)
- */
- if ( (i&1) || ((rhythm&0x20) && (i>=12)) )/* exclude modulators */
- {
- if(op->eg_type) /* non-percussive mode (sustained tone) */
- /*this is correct: use RR when SUS = OFF*/
- /*and use RS when SUS = ON*/
- {
- if (CH->sus)
- {
- if ( !(eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_rs + ((eg_cnt>>op->eg_sh_rs)&7)];
- if ( op->volume >= MAX_ATT_INDEX )
- {
- op->volume = MAX_ATT_INDEX;
- op->state = EG_OFF;
- }
- }
- }
- else
- {
- if ( !(eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_rr + ((eg_cnt>>op->eg_sh_rr)&7)];
- if ( op->volume >= MAX_ATT_INDEX )
- {
- op->volume = MAX_ATT_INDEX;
- op->state = EG_OFF;
- }
- }
- }
- }
- else /* percussive mode */
- {
- if ( !(eg_cnt & ((1<<op->eg_sh_rs)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_rs + ((eg_cnt>>op->eg_sh_rs)&7)];
- if ( op->volume >= MAX_ATT_INDEX )
- {
- op->volume = MAX_ATT_INDEX;
- op->state = EG_OFF;
- }
- }
- }
- }
- break;
-
- default:
- break;
- }
- }
- }
-
- for (i=0; i<9*2; i++)
- {
- CH = &P_CH[i/2];
- op = &CH->SLOT[i&1];
-
- /* Phase Generator */
- if(op->vib)
- {
- uint8_t block;
-
- unsigned int fnum_lfo = 8*((CH->block_fnum&0x01c0) >> 6);
- unsigned int block_fnum = CH->block_fnum * 2;
- signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + fnum_lfo ];
-
- if (lfo_fn_table_index_offset) /* LFO phase modulation active */
- {
- block_fnum += lfo_fn_table_index_offset;
- block = (block_fnum&0x1c00) >> 10;
- op->phase += (fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
- }
- else /* LFO phase modulation = zero */
- {
- op->phase += op->freq;
- }
- }
- else /* LFO phase modulation disabled for this operator */
- {
- op->phase += op->freq;
- }
- }
-
- /* The Noise Generator of the YM3812 is 23-bit shift register.
- * Period is equal to 2^23-2 samples.
- * Register works at sampling frequency of the chip, so output
- * can change on every sample.
- *
- * Output of the register and input to the bit 22 is:
- * bit0 XOR bit14 XOR bit15 XOR bit22
- *
- * Simply use bit 22 as the noise output.
- */
-
- noise_p += noise_f;
- i = noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
- noise_p &= FREQ_MASK;
- while (i)
- {
- /*
- uint32_t j;
- j = ( (noise_rng) ^ (noise_rng>>14) ^ (noise_rng>>15) ^ (noise_rng>>22) ) & 1;
- noise_rng = (j<<22) | (noise_rng>>1);
- */
-
- /*
- Instead of doing all the logic operations above, we
- use a trick here (and use bit 0 as the noise output).
- The difference is only that the noise bit changes one
- step ahead. This doesn't matter since we don't know
- what is real state of the noise_rng after the reset.
- */
-
- if (noise_rng & 1) noise_rng ^= 0x800302;
- noise_rng >>= 1;
-
- i--;
- }
-}
-
-
-int ym2413_device::op_calc(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
-{
- uint32_t p;
-
- p = (env<<5) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<17))) >> FREQ_SH ) & SIN_MASK) ];
-
- if (p >= TL_TAB_LEN)
- return 0;
- return tl_tab[p];
-}
-
-int ym2413_device::op_calc1(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
-{
- uint32_t p;
- int32_t i;
-
- i = (phase & ~FREQ_MASK) + pm;
-
-/*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, phase>>FREQ_SH, pm);*/
-
- p = (env<<5) + sin_tab[ wave_tab + ((i>>FREQ_SH) & SIN_MASK)];
-
-/*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/
-
- if (p >= TL_TAB_LEN)
- return 0;
- return tl_tab[p];
-}
-
-
-#define volume_calc(OP) ((OP)->TLL + ((uint32_t)(OP)->volume) + (LFO_AM & (OP)->AMmask))
-
-/* calculate output */
-void ym2413_device::chan_calc( OPLL_CH *CH )
-{
- OPLL_SLOT *SLOT;
- unsigned int env;
- signed int out;
- signed int phase_modulation; /* phase modulation input (SLOT 2) */
-
-
- /* SLOT 1 */
- SLOT = &CH->SLOT[SLOT1];
- env = volume_calc(SLOT);
- out = SLOT->op1_out[0] + SLOT->op1_out[1];
-
- SLOT->op1_out[0] = SLOT->op1_out[1];
- phase_modulation = SLOT->op1_out[0];
-
- SLOT->op1_out[1] = 0;
-
- if( env < ENV_QUIET )
- {
- if (!SLOT->fb_shift)
- out = 0;
- SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
- }
-
- /* SLOT 2 */
- SLOT++;
- env = volume_calc(SLOT);
- if( env < ENV_QUIET )
- {
- output[0] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable);
- }
-}
-
-/*
- operators used in the rhythm sounds generation process:
-
- Envelope Generator:
-
-channel operator register number Bass High Snare Tom Top
-/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
- 6 / 0 12 50 70 90 f0 +
- 6 / 1 15 53 73 93 f3 +
- 7 / 0 13 51 71 91 f1 +
- 7 / 1 16 54 74 94 f4 +
- 8 / 0 14 52 72 92 f2 +
- 8 / 1 17 55 75 95 f5 +
-
- Phase Generator:
-
-channel operator register number Bass High Snare Tom Top
-/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
- 6 / 0 12 30 +
- 6 / 1 15 33 +
- 7 / 0 13 31 + + +
- 7 / 1 16 34 ----- n o t u s e d -----
- 8 / 0 14 32 +
- 8 / 1 17 35 + +
-
-channel operator register number Bass High Snare Tom Top
-number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
- 6 12,15 B6 A6 +
-
- 7 13,16 B7 A7 + + +
-
- 8 14,17 B8 A8 + + +
-
-*/
-
-/* calculate rhythm */
-
-void ym2413_device::rhythm_calc( OPLL_CH *CH, unsigned int noise )
-{
- OPLL_SLOT *SLOT;
- signed int out;
- unsigned int env;
- signed int phase_modulation; /* phase modulation input (SLOT 2) */
-
-
- /* Bass Drum (verified on real YM3812):
- - depends on the channel 6 'connect' register:
- when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
- when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
- - output sample always is multiplied by 2
- */
-
-
- /* SLOT 1 */
- SLOT = &CH[6].SLOT[SLOT1];
- env = volume_calc(SLOT);
-
- out = SLOT->op1_out[0] + SLOT->op1_out[1];
- SLOT->op1_out[0] = SLOT->op1_out[1];
-
- phase_modulation = SLOT->op1_out[0];
-
- SLOT->op1_out[1] = 0;
- if( env < ENV_QUIET )
- {
- if (!SLOT->fb_shift)
- out = 0;
- SLOT->op1_out[1] = op_calc1(SLOT->phase, env, (out<<SLOT->fb_shift), SLOT->wavetable );
- }
-
- /* SLOT 2 */
- SLOT++;
- env = volume_calc(SLOT);
- if( env < ENV_QUIET )
- output[1] += op_calc(SLOT->phase, env, phase_modulation, SLOT->wavetable) * 2;
-
-
- /* Phase generation is based on: */
- // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases)
- // SD (16) channel 7->slot 1
- // TOM (14) channel 8->slot 1
- // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases)
-
- /* Envelope generation based on: */
- // HH channel 7->slot1
- // SD channel 7->slot2
- // TOM channel 8->slot1
- // TOP channel 8->slot2
-
-
- /* The following formulas can be well optimized.
- I leave them in direct form for now (in case I've missed something).
- */
-
- /* High Hat (verified on real YM3812) */
- env = volume_calc(SLOT7_1);
- if( env < ENV_QUIET )
- {
- /* high hat phase generation:
- phase = d0 or 234 (based on frequency only)
- phase = 34 or 2d0 (based on noise)
- */
-
- /* base frequency derived from operator 1 in channel 7 */
- uint8_t bit7 = ((SLOT7_1->phase>>FREQ_SH)>>7)&1;
- uint8_t bit3 = ((SLOT7_1->phase>>FREQ_SH)>>3)&1;
- uint8_t bit2 = ((SLOT7_1->phase>>FREQ_SH)>>2)&1;
-
- uint8_t res1 = (bit2 ^ bit7) | bit3;
-
- /* when res1 = 0 phase = 0x000 | 0xd0; */
- /* when res1 = 1 phase = 0x200 | (0xd0>>2); */
- uint32_t phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
-
- /* enable gate based on frequency of operator 2 in channel 8 */
- uint8_t bit5e= ((SLOT8_2->phase>>FREQ_SH)>>5)&1;
- uint8_t bit3e= ((SLOT8_2->phase>>FREQ_SH)>>3)&1;
-
- uint8_t res2 = (bit3e | bit5e);
-
- /* when res2 = 0 pass the phase from calculation above (res1); */
- /* when res2 = 1 phase = 0x200 | (0xd0>>2); */
- if (res2)
- phase = (0x200|(0xd0>>2));
-
-
- /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
- /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
- if (phase&0x200)
- {
- if (noise)
- phase = 0x200|0xd0;
- }
- else
- /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
- /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
- {
- if (noise)
- phase = 0xd0>>2;
- }
-
- output[1] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
- }
-
- /* Snare Drum (verified on real YM3812) */
- env = volume_calc(SLOT7_2);
- if( env < ENV_QUIET )
- {
- /* base frequency derived from operator 1 in channel 7 */
- uint8_t bit8 = ((SLOT7_1->phase>>FREQ_SH)>>8)&1;
-
- /* when bit8 = 0 phase = 0x100; */
- /* when bit8 = 1 phase = 0x200; */
- uint32_t phase = bit8 ? 0x200 : 0x100;
-
- /* Noise bit XOR'es phase by 0x100 */
- /* when noisebit = 0 pass the phase from calculation above */
- /* when noisebit = 1 phase ^= 0x100; */
- /* in other words: phase ^= (noisebit<<8); */
- if (noise)
- phase ^= 0x100;
-
- output[1] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
- }
-
- /* Tom Tom (verified on real YM3812) */
- env = volume_calc(SLOT8_1);
- if( env < ENV_QUIET )
- output[1] += op_calc(SLOT8_1->phase, env, 0, SLOT8_1->wavetable) * 2;
-
- /* Top Cymbal (verified on real YM2413) */
- env = volume_calc(SLOT8_2);
- if( env < ENV_QUIET )
- {
- /* base frequency derived from operator 1 in channel 7 */
- uint8_t bit7 = ((SLOT7_1->phase>>FREQ_SH)>>7)&1;
- uint8_t bit3 = ((SLOT7_1->phase>>FREQ_SH)>>3)&1;
- uint8_t bit2 = ((SLOT7_1->phase>>FREQ_SH)>>2)&1;
-
- uint8_t res1 = (bit2 ^ bit7) | bit3;
-
- /* when res1 = 0 phase = 0x000 | 0x100; */
- /* when res1 = 1 phase = 0x200 | 0x100; */
- uint32_t phase = res1 ? 0x300 : 0x100;
-
- /* enable gate based on frequency of operator 2 in channel 8 */
- uint8_t bit5e= ((SLOT8_2->phase>>FREQ_SH)>>5)&1;
- uint8_t bit3e= ((SLOT8_2->phase>>FREQ_SH)>>3)&1;
-
- uint8_t res2 = (bit3e | bit5e);
- /* when res2 = 0 pass the phase from calculation above (res1); */
- /* when res2 = 1 phase = 0x200 | 0x100; */
- if (res2)
- phase = 0x300;
-
- output[1] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
- }
-
-}
-
-void ym2413_device::key_on(OPLL_SLOT *SLOT, uint32_t key_set)
-{
- if( !SLOT->key )
- {
- /* do NOT restart Phase Generator (verified on real YM2413)*/
- /* phase -> Dump */
- SLOT->state = EG_DMP;
- }
- SLOT->key |= key_set;
-}
-
-void ym2413_device::key_off(OPLL_SLOT *SLOT, uint32_t key_clr)
-{
- if( SLOT->key )
- {
- SLOT->key &= key_clr;
-
- if( !SLOT->key )
- {
- /* phase -> Release */
- if (SLOT->state>EG_REL)
- SLOT->state = EG_REL;
- }
- }
-}
-
-/* update phase increment counter of operator (also update the EG rates if necessary) */
-void ym2413_device::calc_fcslot(OPLL_CH *CH, OPLL_SLOT *SLOT)
-{
- int ksr;
- uint32_t SLOT_rs;
- uint32_t SLOT_dp;
-
- /* (frequency) phase increment counter */
- SLOT->freq = CH->fc * SLOT->mul;
- ksr = CH->kcode >> SLOT->KSR;
-
- if( SLOT->ksr != ksr )
- {
- SLOT->ksr = ksr;
-
- /* calculate envelope generator rates */
- if ((SLOT->ar + SLOT->ksr) < 16+62)
- {
- SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
- SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
- }
- else
- {
- SLOT->eg_sh_ar = 0;
- SLOT->eg_sel_ar = 13*RATE_STEPS;
- }
- SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
- SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
- SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
- SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
-
- }
-
- if (CH->sus)
- SLOT_rs = 16 + (5<<2);
- else
- SLOT_rs = 16 + (7<<2);
-
- SLOT->eg_sh_rs = eg_rate_shift [SLOT_rs + SLOT->ksr ];
- SLOT->eg_sel_rs = eg_rate_select[SLOT_rs + SLOT->ksr ];
-
- SLOT_dp = 16 + (13<<2);
- SLOT->eg_sh_dp = eg_rate_shift [SLOT_dp + SLOT->ksr ];
- SLOT->eg_sel_dp = eg_rate_select[SLOT_dp + SLOT->ksr ];
-}
-
-/* set multi,am,vib,EG-TYP,KSR,mul */
-void ym2413_device::set_mul(int slot,int v)
-{
- OPLL_CH *CH = &P_CH[slot/2];
- OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
-
- SLOT->mul = mul_tab[v&0x0f];
- SLOT->KSR = (v&0x10) ? 0 : 2;
- SLOT->eg_type = (v&0x20);
- SLOT->vib = (v&0x40);
- SLOT->AMmask = (v&0x80) ? ~0 : 0;
- calc_fcslot(CH,SLOT);
-}
-
-/* set ksl, tl */
-void ym2413_device::set_ksl_tl(int chan,int v)
-{
- OPLL_CH *CH = &P_CH[chan];
-/* modulator */
- OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
-
- SLOT->ksl = ksl_shift[v >> 6];
- SLOT->TL = (v&0x3f)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
-}
-
-/* set ksl , waveforms, feedback */
-void ym2413_device::set_ksl_wave_fb(int chan,int v)
-{
- OPLL_CH *CH = &P_CH[chan];
-/* modulator */
- OPLL_SLOT *SLOT = &CH->SLOT[SLOT1];
- SLOT->wavetable = ((v&0x08)>>3)*SIN_LEN;
- SLOT->fb_shift = (v&7) ? (v&7) + 8 : 0;
-
-/*carrier*/
- SLOT = &CH->SLOT[SLOT2];
-
- SLOT->ksl = ksl_shift[v >> 6];
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
-
- SLOT->wavetable = ((v&0x10)>>4)*SIN_LEN;
-}
-
-/* set attack rate & decay rate */
-void ym2413_device::set_ar_dr(int slot,int v)
-{
- OPLL_CH *CH = &P_CH[slot/2];
- OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
-
- SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
-
- if ((SLOT->ar + SLOT->ksr) < 16+62)
- {
- SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
- SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
- }
- else
- {
- SLOT->eg_sh_ar = 0;
- SLOT->eg_sel_ar = 13*RATE_STEPS;
- }
-
- SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
- SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
- SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
-}
-
-/* set sustain level & release rate */
-void ym2413_device::set_sl_rr(int slot,int v)
-{
- OPLL_CH *CH = &P_CH[slot/2];
- OPLL_SLOT *SLOT = &CH->SLOT[slot&1];
-
- SLOT->sl = sl_tab[ v>>4 ];
-
- SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
- SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
- SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
-}
-
-void ym2413_device::load_instrument(uint32_t chan, uint32_t slot, uint8_t* inst )
-{
- set_mul (slot, inst[0]);
- set_mul (slot+1, inst[1]);
- set_ksl_tl (chan, inst[2]);
- set_ksl_wave_fb (chan, inst[3]);
- set_ar_dr (slot, inst[4]);
- set_ar_dr (slot+1, inst[5]);
- set_sl_rr (slot, inst[6]);
- set_sl_rr (slot+1, inst[7]);
-}
-
-void ym2413_device::update_instrument_zero( uint8_t r )
-{
- uint8_t* inst = &inst_tab[0][0]; /* point to user instrument */
- uint32_t chan;
- uint32_t chan_max;
-
- chan_max = 9;
- if (rhythm & 0x20)
- chan_max=6;
-
- switch(r)
- {
- case 0:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_mul (chan*2, inst[0]);
- }
- }
- break;
- case 1:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_mul (chan*2+1,inst[1]);
- }
- }
- break;
- case 2:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_ksl_tl (chan, inst[2]);
- }
- }
- break;
- case 3:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_ksl_wave_fb (chan, inst[3]);
- }
- }
- break;
- case 4:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_ar_dr (chan*2, inst[4]);
- }
- }
- break;
- case 5:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_ar_dr (chan*2+1,inst[5]);
- }
- }
- break;
- case 6:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_sl_rr (chan*2, inst[6]);
- }
- }
- break;
- case 7:
- for (chan=0; chan<chan_max; chan++)
- {
- if ((instvol_r[chan]&0xf0)==0)
- {
- set_sl_rr (chan*2+1,inst[7]);
- }
- }
- break;
- }
-}
-
-/* write a value v to register r on chip chip */
-void ym2413_device::write_reg(int r, int v)
-{
- OPLL_CH *CH;
- OPLL_SLOT *SLOT;
- uint8_t *inst;
- int chan;
- int slot;
-
- /* adjust bus to 8 bits */
- r &= 0xff;
- v &= 0xff;
-
- switch(r&0xf0)
- {
- case 0x00: /* 00-0f:control */
- {
- switch(r&0x0f)
- {
- case 0x00: /* AM/VIB/EGTYP/KSR/MULTI (modulator) */
- case 0x01: /* AM/VIB/EGTYP/KSR/MULTI (carrier) */
- case 0x02: /* Key Scale Level, Total Level (modulator) */
- case 0x03: /* Key Scale Level, carrier waveform, modulator waveform, Feedback */
- case 0x04: /* Attack, Decay (modulator) */
- case 0x05: /* Attack, Decay (carrier) */
- case 0x06: /* Sustain, Release (modulator) */
- case 0x07: /* Sustain, Release (carrier) */
- inst_tab[0][r & 0x07] = v;
- update_instrument_zero(r&7);
- break;
-
- case 0x0e: /* x, x, r,bd,sd,tom,tc,hh */
- {
- if(v&0x20)
- {
- if ((rhythm&0x20)==0)
- /*rhythm off to on*/
- {
- logerror("YM2413: Rhythm mode enable\n");
-
- /* Load instrument settings for channel seven(chan=6 since we're zero based). (Bass drum) */
- chan = 6;
- inst = &inst_tab[16][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
-
- /* Load instrument settings for channel eight. (High hat and snare drum) */
- chan = 7;
- inst = &inst_tab[17][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
-
- CH = &P_CH[chan];
- SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH */
- SLOT->TL = ((instvol_r[chan]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
-
- /* Load instrument settings for channel nine. (Tom-tom and top cymbal) */
- chan = 8;
- inst = &inst_tab[18][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
-
- CH = &P_CH[chan];
- SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is TOM */
- SLOT->TL = ((instvol_r[chan]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
- }
- /* BD key on/off */
- if(v&0x10)
- {
- key_on (&P_CH[6].SLOT[SLOT1], 2);
- key_on (&P_CH[6].SLOT[SLOT2], 2);
- }
- else
- {
- key_off(&P_CH[6].SLOT[SLOT1],~2);
- key_off(&P_CH[6].SLOT[SLOT2],~2);
- }
- /* HH key on/off */
- if(v&0x01) key_on (&P_CH[7].SLOT[SLOT1], 2);
- else key_off(&P_CH[7].SLOT[SLOT1],~2);
- /* SD key on/off */
- if(v&0x08) key_on (&P_CH[7].SLOT[SLOT2], 2);
- else key_off(&P_CH[7].SLOT[SLOT2],~2);
- /* TOM key on/off */
- if(v&0x04) key_on (&P_CH[8].SLOT[SLOT1], 2);
- else key_off(&P_CH[8].SLOT[SLOT1],~2);
- /* TOP-CY key on/off */
- if(v&0x02) key_on (&P_CH[8].SLOT[SLOT2], 2);
- else key_off(&P_CH[8].SLOT[SLOT2],~2);
- }
- else
- {
- if (rhythm&0x20)
- /*rhythm on to off*/
- {
- logerror("YM2413: Rhythm mode disable\n");
- /* Load instrument settings for channel seven(chan=6 since we're zero based).*/
- chan = 6;
- inst = &inst_tab[instvol_r[chan]>>4][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
-
- /* Load instrument settings for channel eight.*/
- chan = 7;
- inst = &inst_tab[instvol_r[chan]>>4][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
-
- /* Load instrument settings for channel nine.*/
- chan = 8;
- inst = &inst_tab[instvol_r[chan]>>4][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
- }
- /* BD key off */
- key_off(&P_CH[6].SLOT[SLOT1],~2);
- key_off(&P_CH[6].SLOT[SLOT2],~2);
- /* HH key off */
- key_off(&P_CH[7].SLOT[SLOT1],~2);
- /* SD key off */
- key_off(&P_CH[7].SLOT[SLOT2],~2);
- /* TOM key off */
- key_off(&P_CH[8].SLOT[SLOT1],~2);
- /* TOP-CY off */
- key_off(&P_CH[8].SLOT[SLOT2],~2);
- }
- rhythm = v&0x3f;
- }
- break;
- }
- }
- break;
-
- case 0x10:
- case 0x20:
- {
- int block_fnum;
-
- chan = r&0x0f;
-
- if (chan >= 9)
- chan -= 9; /* verified on real YM2413 */
-
- CH = &P_CH[chan];
-
- if(r&0x10)
- { /* 10-18: FNUM 0-7 */
- block_fnum = (CH->block_fnum&0x0f00) | v;
- }
- else
- { /* 20-28: suson, keyon, block, FNUM 8 */
- block_fnum = ((v&0x0f)<<8) | (CH->block_fnum&0xff);
-
- if(v&0x10)
- {
- key_on (&CH->SLOT[SLOT1], 1);
- key_on (&CH->SLOT[SLOT2], 1);
- }
- else
- {
- key_off(&CH->SLOT[SLOT1],~1);
- key_off(&CH->SLOT[SLOT2],~1);
- }
-
-
- if (CH->sus!=(v&0x20))
- logerror("chan=%i sus=%2x\n",chan,v&0x20);
-
- CH->sus = v & 0x20;
- }
- /* update */
- if(CH->block_fnum != block_fnum)
- {
- uint8_t block;
-
- CH->block_fnum = block_fnum;
-
- /* BLK 2,1,0 bits -> bits 3,2,1 of kcode, FNUM MSB -> kcode LSB */
- CH->kcode = (block_fnum&0x0f00)>>8;
-
- CH->ksl_base = static_cast<uint32_t>(ksl_tab[block_fnum>>5]);
-
- block_fnum = block_fnum * 2;
- block = (block_fnum&0x1c00) >> 10;
- CH->fc = fn_tab[block_fnum&0x03ff] >> (7-block);
-
- /* refresh Total Level in both SLOTs of this channel */
- CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
- CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
-
- /* refresh frequency counter in both SLOTs of this channel */
- calc_fcslot(CH,&CH->SLOT[SLOT1]);
- calc_fcslot(CH,&CH->SLOT[SLOT2]);
- }
- }
- break;
-
- case 0x30: /* inst 4 MSBs, VOL 4 LSBs */
- {
- uint8_t old_instvol;
-
- chan = r&0x0f;
-
- if (chan >= 9)
- chan -= 9; /* verified on real YM2413 */
-
- old_instvol = instvol_r[chan];
- instvol_r[chan] = v; /* store for later use */
-
- CH = &P_CH[chan];
- SLOT = &CH->SLOT[SLOT2]; /* carrier */
- SLOT->TL = ((v&0x0f)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
-
-
- /*check whether we are in rhythm mode and handle instrument/volume register accordingly*/
- if ((chan>=6) && (rhythm&0x20))
- {
- /* we're in rhythm mode*/
-
- if (chan>=7) /* only for channel 7 and 8 (channel 6 is handled in usual way)*/
- {
- SLOT = &CH->SLOT[SLOT1]; /* modulator envelope is HH(chan=7) or TOM(chan=8) */
- SLOT->TL = ((instvol_r[chan]>>4)<<2)<<(ENV_BITS-2-7); /* 7 bits TL (bit 6 = always 0) */
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
- }
- }
- else
- {
- if ( (old_instvol&0xf0) == (v&0xf0) )
- return;
-
- inst = &inst_tab[instvol_r[chan]>>4][0];
- slot = chan*2;
-
- load_instrument(chan, slot, inst);
-
- #if 0
- logerror("YM2413: chan#%02i inst=%02i: (r=%2x, v=%2x)\n",chan,v>>4,r,v);
- logerror(" 0:%2x 1:%2x\n",inst[0],inst[1]); logerror(" 2:%2x 3:%2x\n",inst[2],inst[3]);
- logerror(" 4:%2x 5:%2x\n",inst[4],inst[5]); logerror(" 6:%2x 7:%2x\n",inst[6],inst[7]);
- #endif
- }
- }
- break;
-
- default:
- break;
- }
-}
-
-//-------------------------------------------------
-// sound_stream_update - handle a stream update
-//-------------------------------------------------
-
-void ym2413_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
-{
- for(int i=0; i < samples ; i++ )
- {
- output[0] = 0;
- output[1] = 0;
-
- advance_lfo();
-
- /* FM part */
- for(int j=0; j<6; j++)
- chan_calc(&P_CH[j]);
-
- if(!(rhythm & 0x20))
- {
- for(int j=6; j<9; j++)
- chan_calc(&P_CH[j]);
- }
- else /* Rhythm part */
- {
- rhythm_calc(&P_CH[0], noise_rng & 1 );
- }
-
- outputs[0][i] = limit( output[0] , 32767, -32768 );
- outputs[1][i] = limit( output[1] , 32767, -32768 );
-
- advance();
- }
-}
-
-//-------------------------------------------------
-// device_start - device-specific startup
-//-------------------------------------------------
-
-void ym2413_device::device_start()
-{
- int rate = clock()/72;
-
- m_stream = machine().sound().stream_alloc(*this,0,2,rate);
-
- for (int x=0; x<TL_RES_LEN; x++)
- {
- double m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
- m = floor(m);
-
- /* we never reach (1<<16) here due to the (x+1) */
- /* result fits within 16 bits at maximum */
-
- int n = (int)m; /* 16 bits here */
- n >>= 4; /* 12 bits here */
- if (n&1) /* round to nearest */
- n = (n>>1)+1;
- else
- n = n>>1;
- /* 11 bits here (rounded) */
- tl_tab[ x*2 + 0 ] = n;
- tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
-
- for (int i=1; i<11; i++)
- {
- tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
- tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
- }
- }
-
- for (int i=0; i<SIN_LEN; i++)
- {
- /* non-standard sinus */
- double m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
-
- /* we never reach zero here due to ((i*2)+1) */
-
- double o = 8*log(1.0/fabs(m))/log(2.0); /* convert to 'decibels' */
-
- o = o / (ENV_STEP/4);
-
- int n = (int)(2.0*o);
- if (n&1) /* round to nearest */
- n = (n>>1)+1;
- else
- n = n>>1;
-
- /* waveform 0: standard sinus */
- sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
-
- /* waveform 1: __ __ */
- /* / \____/ \____*/
- /* output only first half of the sinus waveform (positive one) */
- if (i & (1<<(SIN_BITS-1)) )
- sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
- else
- sin_tab[1*SIN_LEN+i] = sin_tab[i];
- }
-
- /* make fnumber -> increment counter table */
- for( int i = 0 ; i < 1024; i++ )
- {
- /* OPLL (YM2413) phase increment counter = 18bit */
-
- fn_tab[i] = i * (64 <<(FREQ_SH-10)); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
- }
-
- /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
- /* One entry from LFO_AM_TABLE lasts for 64 samples */
- lfo_am_inc = (1<<LFO_SH) / 64;
-
- /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
- lfo_pm_inc = (1<<LFO_SH) / 1024;
-
- /* Noise generator: a step takes 1 sample */
- noise_f = 1<<FREQ_SH;
-
- eg_timer_add = 1<<EG_SH;
- eg_timer_overflow = 1<<EG_SH;
-
-
- save_item(NAME(instvol_r));
- save_item(NAME(eg_cnt));
- save_item(NAME(eg_timer));
- save_item(NAME(eg_timer_add));
- save_item(NAME(eg_timer_overflow));
- save_item(NAME(rhythm));
- save_item(NAME(lfo_am_cnt));
- save_item(NAME(lfo_am_inc));
- save_item(NAME(lfo_pm_cnt));
- save_item(NAME(lfo_pm_inc));
- save_item(NAME(noise_rng));
- save_item(NAME(noise_p));
- save_item(NAME(noise_f));
- save_item(NAME(inst_tab));
- save_item(NAME(address));
-
- for (int chnum = 0; chnum < ARRAY_LENGTH(P_CH); chnum++)
- {
- OPLL_CH *ch = &P_CH[chnum];
-
- save_item(NAME(ch->block_fnum), chnum);
- save_item(NAME(ch->fc), chnum);
- save_item(NAME(ch->ksl_base), chnum);
- save_item(NAME(ch->kcode), chnum);
- save_item(NAME(ch->sus), chnum);
-
- for (int slotnum = 0; slotnum < ARRAY_LENGTH(ch->SLOT); slotnum++)
- {
- OPLL_SLOT *sl = &ch->SLOT[slotnum];
-
- save_item(NAME(sl->ar), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->dr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->rr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->KSR), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->ksl), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->ksr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->mul), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->phase), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->freq), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->fb_shift), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->op1_out), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_type), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->state), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->TL), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->TLL), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->volume), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->sl), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sh_dp), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sel_dp), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sh_ar), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sel_ar), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sh_dr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sel_dr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sh_rr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sel_rr), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sh_rs), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->eg_sel_rs), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->key), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->AMmask), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->vib), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- save_item(NAME(sl->wavetable), chnum * ARRAY_LENGTH(ch->SLOT) + slotnum);
- }
- }
-}
-
-//-------------------------------------------------
-// device_clock_changed
-//-------------------------------------------------
-void ym2413_device::device_clock_changed()
-{
- m_stream->set_sample_rate(clock() / 72);
-}
-
-//-------------------------------------------------
-// device_reset - device-specific reset
-//-------------------------------------------------
-
-void ym2413_device::device_reset()
-{
- eg_timer = 0;
- eg_cnt = 0;
-
- noise_rng = 1; /* noise shift register */
-
- /* setup instruments table */
- if (m_inst_table != nullptr)
- {
- for (int i=0; i<19; i++)
- {
- for (int c=0; c<8; c++)
- {
- inst_tab[i][c] = m_inst_table[i][c];
- }
- }
- }
-
-
- /* reset with register write */
- write_reg(0x0f,0); /*test reg*/
- for(int i = 0x3f ; i >= 0x10 ; i-- )
- write_reg(i, 0x00);
-
- /* reset operator parameters */
- for(int c = 0 ; c < 9 ; c++ )
- {
- OPLL_CH *CH = &P_CH[c];
- for(int s = 0 ; s < 2 ; s++ )
- {
- /* wave table */
- CH->SLOT[s].wavetable = 0;
- CH->SLOT[s].state = EG_OFF;
- CH->SLOT[s].volume = MAX_ATT_INDEX;
- }
- }
-}
-
-
-void ym2413_device::write(offs_t offset, u8 data)
-{
- if (offset)
- data_port_w(data);
- else
- register_port_w(data);
-}
-
-void ym2413_device::register_port_w(u8 data)
-{
- address = data;
-}
-
-void ym2413_device::data_port_w(u8 data)
-{
- m_stream->update();
- write_reg(address, data);
-}
-
-DEFINE_DEVICE_TYPE(YM2413, ym2413_device, "ym2413", "Yamaha YM2413 OPLL")
-
-ym2413_device::ym2413_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
- : ym2413_device(mconfig, YM2413, tag, owner, clock)
-{
- for (int i = 0; i < 19; i++)
- {
- for (int c = 0; c < 8; c++)
- {
- m_inst_table[i][c] = table[i][c];
- }
- }
-}
-
-ym2413_device::ym2413_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
- : device_t(mconfig, type, tag, owner, clock)
- , device_sound_interface(mconfig, *this)
-{
- for (int i = 0; i < 19; i++)
- {
- std::fill_n(&m_inst_table[i][0], 8, 0);
- }
-}
-
-DEFINE_DEVICE_TYPE(VRC7, vrc7snd_device, "vrc7snd", "Konami VRC7 (Sound)")
-
-vrc7snd_device::vrc7snd_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
- : ym2413_device(mconfig, VRC7, tag, owner, clock)
-{
- for (int i = 0; i < 19; i++)
- {
- for (int c = 0; c < 8; c++)
- {
- m_inst_table[i][c] = vrc7_table[i][c];
- }
- }
-}