diff options
Diffstat (limited to '3rdparty/lua/src/lopcodes.h')
-rw-r--r-- | 3rdparty/lua/src/lopcodes.h | 416 |
1 files changed, 262 insertions, 154 deletions
diff --git a/3rdparty/lua/src/lopcodes.h b/3rdparty/lua/src/lopcodes.h index bbc4b61968a..7c274515960 100644 --- a/3rdparty/lua/src/lopcodes.h +++ b/3rdparty/lua/src/lopcodes.h @@ -1,5 +1,5 @@ /* -** $Id: lopcodes.h,v 1.149 2016/07/19 17:12:21 roberto Exp $ +** $Id: lopcodes.h $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ @@ -11,69 +11,94 @@ /*=========================================================================== - We assume that instructions are unsigned numbers. - All instructions have an opcode in the first 6 bits. - Instructions can have the following fields: - 'A' : 8 bits - 'B' : 9 bits - 'C' : 9 bits - 'Ax' : 26 bits ('A', 'B', and 'C' together) - 'Bx' : 18 bits ('B' and 'C' together) - 'sBx' : signed Bx - - A signed argument is represented in excess K; that is, the number - value is the unsigned value minus K. K is exactly the maximum value - for that argument (so that -max is represented by 0, and +max is - represented by 2*max), which is half the maximum for the corresponding - unsigned argument. + We assume that instructions are unsigned 32-bit integers. + All instructions have an opcode in the first 7 bits. + Instructions can have the following formats: + + 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 + 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 +iABC C(8) | B(8) |k| A(8) | Op(7) | +iABx Bx(17) | A(8) | Op(7) | +iAsBx sBx (signed)(17) | A(8) | Op(7) | +iAx Ax(25) | Op(7) | +isJ sJ(25) | Op(7) | + + A signed argument is represented in excess K: the represented value is + the written unsigned value minus K, where K is half the maximum for the + corresponding unsigned argument. ===========================================================================*/ -enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ +enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ /* ** size and position of opcode arguments. */ -#define SIZE_C 9 -#define SIZE_B 9 -#define SIZE_Bx (SIZE_C + SIZE_B) +#define SIZE_C 8 +#define SIZE_B 8 +#define SIZE_Bx (SIZE_C + SIZE_B + 1) #define SIZE_A 8 -#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) +#define SIZE_Ax (SIZE_Bx + SIZE_A) +#define SIZE_sJ (SIZE_Bx + SIZE_A) -#define SIZE_OP 6 +#define SIZE_OP 7 #define POS_OP 0 + #define POS_A (POS_OP + SIZE_OP) -#define POS_C (POS_A + SIZE_A) -#define POS_B (POS_C + SIZE_C) -#define POS_Bx POS_C +#define POS_k (POS_A + SIZE_A) +#define POS_B (POS_k + 1) +#define POS_C (POS_B + SIZE_B) + +#define POS_Bx POS_k + #define POS_Ax POS_A +#define POS_sJ POS_A + /* ** limits for opcode arguments. -** we use (signed) int to manipulate most arguments, -** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) +** we use (signed) 'int' to manipulate most arguments, +** so they must fit in ints. */ -#if SIZE_Bx < LUAI_BITSINT-1 -#define MAXARG_Bx ((1<<SIZE_Bx)-1) -#define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ + +/* Check whether type 'int' has at least 'b' bits ('b' < 32) */ +#define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1) + + +#if L_INTHASBITS(SIZE_Bx) +#define MAXARG_Bx ((1<<SIZE_Bx)-1) #else -#define MAXARG_Bx MAX_INT -#define MAXARG_sBx MAX_INT +#define MAXARG_Bx MAX_INT #endif -#if SIZE_Ax < LUAI_BITSINT-1 +#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ + + +#if L_INTHASBITS(SIZE_Ax) #define MAXARG_Ax ((1<<SIZE_Ax)-1) #else #define MAXARG_Ax MAX_INT #endif +#if L_INTHASBITS(SIZE_sJ) +#define MAXARG_sJ ((1 << SIZE_sJ) - 1) +#else +#define MAXARG_sJ MAX_INT +#endif + +#define OFFSET_sJ (MAXARG_sJ >> 1) -#define MAXARG_A ((1<<SIZE_A)-1) -#define MAXARG_B ((1<<SIZE_B)-1) -#define MAXARG_C ((1<<SIZE_C)-1) + +#define MAXARG_A ((1<<SIZE_A)-1) +#define MAXARG_B ((1<<SIZE_B)-1) +#define MAXARG_C ((1<<SIZE_C)-1) +#define OFFSET_sC (MAXARG_C >> 1) + +#define int2sC(i) ((i) + OFFSET_sC) +#define sC2int(i) ((i) - OFFSET_sC) /* creates a mask with 'n' 1 bits at position 'p' */ @@ -90,33 +115,49 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) -#define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) +#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) + + +#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) #define GETARG_A(i) getarg(i, POS_A, SIZE_A) #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) -#define GETARG_B(i) getarg(i, POS_B, SIZE_B) +#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) +#define GETARG_sB(i) sC2int(GETARG_B(i)) #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) -#define GETARG_C(i) getarg(i, POS_C, SIZE_C) +#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) +#define GETARG_sC(i) sC2int(GETARG_C(i)) #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) -#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) +#define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k))))) +#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1)) +#define SETARG_k(i,v) setarg(i, v, POS_k, 1) + +#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) -#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) +#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) -#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) -#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) +#define GETARG_sBx(i) \ + check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) +#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) + +#define GETARG_sJ(i) \ + check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) +#define SETARG_sJ(i,j) \ + setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) -#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ +#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, b)<<POS_B) \ - | (cast(Instruction, c)<<POS_C)) + | (cast(Instruction, c)<<POS_C) \ + | (cast(Instruction, k)<<POS_k)) #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ @@ -125,27 +166,15 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_Ax)) +#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ + | (cast(Instruction, j) << POS_sJ) \ + | (cast(Instruction, k) << POS_k)) -/* -** Macros to operate RK indices -*/ - -/* this bit 1 means constant (0 means register) */ -#define BITRK (1 << (SIZE_B - 1)) - -/* test whether value is a constant */ -#define ISK(x) ((x) & BITRK) - -/* gets the index of the constant */ -#define INDEXK(r) ((int)(r) & ~BITRK) #if !defined(MAXINDEXRK) /* (for debugging only) */ -#define MAXINDEXRK (BITRK - 1) +#define MAXINDEXRK MAXARG_B #endif -/* code a constant index as a RK value */ -#define RKASK(x) ((x) | BITRK) - /* ** invalid register that fits in 8 bits @@ -154,144 +183,223 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ /* -** R(x) - register -** Kst(x) - constant (in constant table) -** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) +** R[x] - register +** K[x] - constant (in constant table) +** RK(x) == if k(i) then K[x] else R[x] */ /* -** grep "ORDER OP" if you change these enums +** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*) +** has extra descriptions in the notes after the enumeration. */ typedef enum { /*---------------------------------------------------------------------- -name args description + name args description ------------------------------------------------------------------------*/ -OP_MOVE,/* A B R(A) := R(B) */ -OP_LOADK,/* A Bx R(A) := Kst(Bx) */ -OP_LOADKX,/* A R(A) := Kst(extra arg) */ -OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ -OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ -OP_GETUPVAL,/* A B R(A) := UpValue[B] */ - -OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ -OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ - -OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ -OP_SETUPVAL,/* A B UpValue[B] := R(A) */ -OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ - -OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ - -OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ - -OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ -OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ -OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ -OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ -OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ -OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ -OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */ -OP_BAND,/* A B C R(A) := RK(B) & RK(C) */ -OP_BOR,/* A B C R(A) := RK(B) | RK(C) */ -OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */ -OP_SHL,/* A B C R(A) := RK(B) << RK(C) */ -OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */ -OP_UNM,/* A B R(A) := -R(B) */ -OP_BNOT,/* A B R(A) := ~R(B) */ -OP_NOT,/* A B R(A) := not R(B) */ -OP_LEN,/* A B R(A) := length of R(B) */ - -OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ - -OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */ -OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ -OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ -OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ - -OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ -OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ - -OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ -OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ -OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ - -OP_FORLOOP,/* A sBx R(A)+=R(A+2); - if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ -OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ - -OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ -OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ +OP_MOVE,/* A B R[A] := R[B] */ +OP_LOADI,/* A sBx R[A] := sBx */ +OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ +OP_LOADK,/* A Bx R[A] := K[Bx] */ +OP_LOADKX,/* A R[A] := K[extra arg] */ +OP_LOADFALSE,/* A R[A] := false */ +OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */ +OP_LOADTRUE,/* A R[A] := true */ +OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ +OP_GETUPVAL,/* A B R[A] := UpValue[B] */ +OP_SETUPVAL,/* A B UpValue[B] := R[A] */ + +OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:string] */ +OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ +OP_GETI,/* A B C R[A] := R[B][C] */ +OP_GETFIELD,/* A B C R[A] := R[B][K[C]:string] */ + +OP_SETTABUP,/* A B C UpValue[A][K[B]:string] := RK(C) */ +OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ +OP_SETI,/* A B C R[A][B] := RK(C) */ +OP_SETFIELD,/* A B C R[A][K[B]:string] := RK(C) */ + +OP_NEWTABLE,/* A B C k R[A] := {} */ + +OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */ + +OP_ADDI,/* A B sC R[A] := R[B] + sC */ + +OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */ +OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */ +OP_MULK,/* A B C R[A] := R[B] * K[C]:number */ +OP_MODK,/* A B C R[A] := R[B] % K[C]:number */ +OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */ +OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */ +OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */ + +OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ +OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ +OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ + +OP_SHRI,/* A B sC R[A] := R[B] >> sC */ +OP_SHLI,/* A B sC R[A] := sC << R[B] */ + +OP_ADD,/* A B C R[A] := R[B] + R[C] */ +OP_SUB,/* A B C R[A] := R[B] - R[C] */ +OP_MUL,/* A B C R[A] := R[B] * R[C] */ +OP_MOD,/* A B C R[A] := R[B] % R[C] */ +OP_POW,/* A B C R[A] := R[B] ^ R[C] */ +OP_DIV,/* A B C R[A] := R[B] / R[C] */ +OP_IDIV,/* A B C R[A] := R[B] // R[C] */ + +OP_BAND,/* A B C R[A] := R[B] & R[C] */ +OP_BOR,/* A B C R[A] := R[B] | R[C] */ +OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ +OP_SHL,/* A B C R[A] := R[B] << R[C] */ +OP_SHR,/* A B C R[A] := R[B] >> R[C] */ + +OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */ +OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ +OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ + +OP_UNM,/* A B R[A] := -R[B] */ +OP_BNOT,/* A B R[A] := ~R[B] */ +OP_NOT,/* A B R[A] := not R[B] */ +OP_LEN,/* A B R[A] := #R[B] (length operator) */ + +OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ + +OP_CLOSE,/* A close all upvalues >= R[A] */ +OP_TBC,/* A mark variable A "to be closed" */ +OP_JMP,/* sJ pc += sJ */ +OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ +OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ +OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ + +OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ +OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ +OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ +OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ +OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ +OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ + +OP_TEST,/* A k if (not R[A] == k) then pc++ */ +OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */ + +OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ +OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ + +OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ +OP_RETURN0,/* return */ +OP_RETURN1,/* A return R[A] */ + +OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ +OP_FORPREP,/* A Bx <check values and prepare counters>; + if not to run then pc+=Bx+1; */ + +OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ +OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ +OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ + +OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */ + +OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ + +OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ -OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ - -OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ - -OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ +OP_VARARGPREP,/*A (adjust vararg parameters) */ OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ } OpCode; -#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) +#define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) /*=========================================================================== Notes: - (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is - set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, - OP_SETLIST) may use 'top'. - (*) In OP_VARARG, if (B == 0) then use actual number of varargs and + (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean + value, in a code equivalent to (not cond ? false : true). (It + produces false and skips the next instruction producing true.) + + (*) Opcodes OP_MMBIN and variants follow each arithmetic and + bitwise opcode. If the operation succeeds, it skips this next + opcode. Otherwise, this opcode calls the corresponding metamethod. + + (*) Opcode OP_TESTSET is used in short-circuit expressions that need + both to jump and to produce a value, such as (a = b or c). + + (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then + 'top' is set to last_result+1, so next open instruction (OP_CALL, + OP_RETURN*, OP_SETLIST) may use 'top'. + + (*) In OP_VARARG, if (C == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to 'top'. - (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next - 'instruction' is EXTRAARG(real C). + (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always + OP_EXTRAARG. - (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. + (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then + real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the + bits of C). - (*) For comparisons, A specifies what condition the test should accept + (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a + power of 2) plus 1, or zero for size zero. If not k, the array size + is C. Otherwise, the array size is EXTRAARG _ C. + + (*) For comparisons, k specifies what condition the test should accept (true or false). + (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped + (the constant is the first operand). + (*) All 'skips' (pc++) assume that next instruction is a jump. + (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the + function builds upvalues, which may need to be closed. C > 0 means + the function is vararg, so that its 'func' must be corrected before + returning; in this case, (C - 1) is its number of fixed parameters. + + (*) In comparisons with an immediate operand, C signals whether the + original operand was a float. (It must be corrected in case of + metamethods.) + ===========================================================================*/ /* ** masks for instruction properties. The format is: -** bits 0-1: op mode -** bits 2-3: C arg mode -** bits 4-5: B arg mode -** bit 6: instruction set register A -** bit 7: operator is a test (next instruction must be a jump) +** bits 0-2: op mode +** bit 3: instruction set register A +** bit 4: operator is a test (next instruction must be a jump) +** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) +** bit 6: instruction sets 'L->top' for next instruction (when C == 0) +** bit 7: instruction is an MM instruction (call a metamethod) */ -enum OpArgMask { - OpArgN, /* argument is not used */ - OpArgU, /* argument is used */ - OpArgR, /* argument is a register or a jump offset */ - OpArgK /* argument is a constant or register/constant */ -}; +LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) -LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; +#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) +#define testAMode(m) (luaP_opmodes[m] & (1 << 3)) +#define testTMode(m) (luaP_opmodes[m] & (1 << 4)) +#define testITMode(m) (luaP_opmodes[m] & (1 << 5)) +#define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) +#define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) -#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) -#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) -#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) -#define testAMode(m) (luaP_opmodes[m] & (1 << 6)) -#define testTMode(m) (luaP_opmodes[m] & (1 << 7)) +/* "out top" (set top for next instruction) */ +#define isOT(i) \ + ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ + GET_OPCODE(i) == OP_TAILCALL) +/* "in top" (uses top from previous instruction) */ +#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) -LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ +#define opmode(mm,ot,it,t,a,m) \ + (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m)) /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 - #endif |