summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/lua/src/lopcodes.h
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/lua/src/lopcodes.h')
-rw-r--r--3rdparty/lua/src/lopcodes.h416
1 files changed, 262 insertions, 154 deletions
diff --git a/3rdparty/lua/src/lopcodes.h b/3rdparty/lua/src/lopcodes.h
index bbc4b61968a..7c274515960 100644
--- a/3rdparty/lua/src/lopcodes.h
+++ b/3rdparty/lua/src/lopcodes.h
@@ -1,5 +1,5 @@
/*
-** $Id: lopcodes.h,v 1.149 2016/07/19 17:12:21 roberto Exp $
+** $Id: lopcodes.h $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/
@@ -11,69 +11,94 @@
/*===========================================================================
- We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits.
- Instructions can have the following fields:
- 'A' : 8 bits
- 'B' : 9 bits
- 'C' : 9 bits
- 'Ax' : 26 bits ('A', 'B', and 'C' together)
- 'Bx' : 18 bits ('B' and 'C' together)
- 'sBx' : signed Bx
-
- A signed argument is represented in excess K; that is, the number
- value is the unsigned value minus K. K is exactly the maximum value
- for that argument (so that -max is represented by 0, and +max is
- represented by 2*max), which is half the maximum for the corresponding
- unsigned argument.
+ We assume that instructions are unsigned 32-bit integers.
+ All instructions have an opcode in the first 7 bits.
+ Instructions can have the following formats:
+
+ 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
+ 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+iABC C(8) | B(8) |k| A(8) | Op(7) |
+iABx Bx(17) | A(8) | Op(7) |
+iAsBx sBx (signed)(17) | A(8) | Op(7) |
+iAx Ax(25) | Op(7) |
+isJ sJ(25) | Op(7) |
+
+ A signed argument is represented in excess K: the represented value is
+ the written unsigned value minus K, where K is half the maximum for the
+ corresponding unsigned argument.
===========================================================================*/
-enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
+enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */
/*
** size and position of opcode arguments.
*/
-#define SIZE_C 9
-#define SIZE_B 9
-#define SIZE_Bx (SIZE_C + SIZE_B)
+#define SIZE_C 8
+#define SIZE_B 8
+#define SIZE_Bx (SIZE_C + SIZE_B + 1)
#define SIZE_A 8
-#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
+#define SIZE_Ax (SIZE_Bx + SIZE_A)
+#define SIZE_sJ (SIZE_Bx + SIZE_A)
-#define SIZE_OP 6
+#define SIZE_OP 7
#define POS_OP 0
+
#define POS_A (POS_OP + SIZE_OP)
-#define POS_C (POS_A + SIZE_A)
-#define POS_B (POS_C + SIZE_C)
-#define POS_Bx POS_C
+#define POS_k (POS_A + SIZE_A)
+#define POS_B (POS_k + 1)
+#define POS_C (POS_B + SIZE_B)
+
+#define POS_Bx POS_k
+
#define POS_Ax POS_A
+#define POS_sJ POS_A
+
/*
** limits for opcode arguments.
-** we use (signed) int to manipulate most arguments,
-** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
+** we use (signed) 'int' to manipulate most arguments,
+** so they must fit in ints.
*/
-#if SIZE_Bx < LUAI_BITSINT-1
-#define MAXARG_Bx ((1<<SIZE_Bx)-1)
-#define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
+
+/* Check whether type 'int' has at least 'b' bits ('b' < 32) */
+#define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1)
+
+
+#if L_INTHASBITS(SIZE_Bx)
+#define MAXARG_Bx ((1<<SIZE_Bx)-1)
#else
-#define MAXARG_Bx MAX_INT
-#define MAXARG_sBx MAX_INT
+#define MAXARG_Bx MAX_INT
#endif
-#if SIZE_Ax < LUAI_BITSINT-1
+#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
+
+
+#if L_INTHASBITS(SIZE_Ax)
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
#else
#define MAXARG_Ax MAX_INT
#endif
+#if L_INTHASBITS(SIZE_sJ)
+#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
+#else
+#define MAXARG_sJ MAX_INT
+#endif
+
+#define OFFSET_sJ (MAXARG_sJ >> 1)
-#define MAXARG_A ((1<<SIZE_A)-1)
-#define MAXARG_B ((1<<SIZE_B)-1)
-#define MAXARG_C ((1<<SIZE_C)-1)
+
+#define MAXARG_A ((1<<SIZE_A)-1)
+#define MAXARG_B ((1<<SIZE_B)-1)
+#define MAXARG_C ((1<<SIZE_C)-1)
+#define OFFSET_sC (MAXARG_C >> 1)
+
+#define int2sC(i) ((i) + OFFSET_sC)
+#define sC2int(i) ((i) - OFFSET_sC)
/* creates a mask with 'n' 1 bits at position 'p' */
@@ -90,33 +115,49 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
-#define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
+#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
+
+
+#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
-#define GETARG_B(i) getarg(i, POS_B, SIZE_B)
+#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
+#define GETARG_sB(i) sC2int(GETARG_B(i))
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
-#define GETARG_C(i) getarg(i, POS_C, SIZE_C)
+#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
+#define GETARG_sC(i) sC2int(GETARG_C(i))
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
-#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
+#define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k)))))
+#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
+#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
+
+#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
-#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
+#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
-#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
-#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
+#define GETARG_sBx(i) \
+ check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
+#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
+
+#define GETARG_sJ(i) \
+ check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
+#define SETARG_sJ(i,j) \
+ setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
-#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
+#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, b)<<POS_B) \
- | (cast(Instruction, c)<<POS_C))
+ | (cast(Instruction, c)<<POS_C) \
+ | (cast(Instruction, k)<<POS_k))
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
@@ -125,27 +166,15 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_Ax))
+#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
+ | (cast(Instruction, j) << POS_sJ) \
+ | (cast(Instruction, k) << POS_k))
-/*
-** Macros to operate RK indices
-*/
-
-/* this bit 1 means constant (0 means register) */
-#define BITRK (1 << (SIZE_B - 1))
-
-/* test whether value is a constant */
-#define ISK(x) ((x) & BITRK)
-
-/* gets the index of the constant */
-#define INDEXK(r) ((int)(r) & ~BITRK)
#if !defined(MAXINDEXRK) /* (for debugging only) */
-#define MAXINDEXRK (BITRK - 1)
+#define MAXINDEXRK MAXARG_B
#endif
-/* code a constant index as a RK value */
-#define RKASK(x) ((x) | BITRK)
-
/*
** invalid register that fits in 8 bits
@@ -154,144 +183,223 @@ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
/*
-** R(x) - register
-** Kst(x) - constant (in constant table)
-** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
+** R[x] - register
+** K[x] - constant (in constant table)
+** RK(x) == if k(i) then K[x] else R[x]
*/
/*
-** grep "ORDER OP" if you change these enums
+** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*)
+** has extra descriptions in the notes after the enumeration.
*/
typedef enum {
/*----------------------------------------------------------------------
-name args description
+ name args description
------------------------------------------------------------------------*/
-OP_MOVE,/* A B R(A) := R(B) */
-OP_LOADK,/* A Bx R(A) := Kst(Bx) */
-OP_LOADKX,/* A R(A) := Kst(extra arg) */
-OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
-OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
-OP_GETUPVAL,/* A B R(A) := UpValue[B] */
-
-OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
-OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
-
-OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
-OP_SETUPVAL,/* A B UpValue[B] := R(A) */
-OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
-
-OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
-
-OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
-
-OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
-OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
-OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
-OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
-OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
-OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
-OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */
-OP_BAND,/* A B C R(A) := RK(B) & RK(C) */
-OP_BOR,/* A B C R(A) := RK(B) | RK(C) */
-OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */
-OP_SHL,/* A B C R(A) := RK(B) << RK(C) */
-OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */
-OP_UNM,/* A B R(A) := -R(B) */
-OP_BNOT,/* A B R(A) := ~R(B) */
-OP_NOT,/* A B R(A) := not R(B) */
-OP_LEN,/* A B R(A) := length of R(B) */
-
-OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
-
-OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
-OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
-OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
-OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
-
-OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
-OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
-
-OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
-OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
-OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
-
-OP_FORLOOP,/* A sBx R(A)+=R(A+2);
- if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
-OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
-
-OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
-OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
+OP_MOVE,/* A B R[A] := R[B] */
+OP_LOADI,/* A sBx R[A] := sBx */
+OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */
+OP_LOADK,/* A Bx R[A] := K[Bx] */
+OP_LOADKX,/* A R[A] := K[extra arg] */
+OP_LOADFALSE,/* A R[A] := false */
+OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */
+OP_LOADTRUE,/* A R[A] := true */
+OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */
+OP_GETUPVAL,/* A B R[A] := UpValue[B] */
+OP_SETUPVAL,/* A B UpValue[B] := R[A] */
+
+OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:string] */
+OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */
+OP_GETI,/* A B C R[A] := R[B][C] */
+OP_GETFIELD,/* A B C R[A] := R[B][K[C]:string] */
+
+OP_SETTABUP,/* A B C UpValue[A][K[B]:string] := RK(C) */
+OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */
+OP_SETI,/* A B C R[A][B] := RK(C) */
+OP_SETFIELD,/* A B C R[A][K[B]:string] := RK(C) */
+
+OP_NEWTABLE,/* A B C k R[A] := {} */
+
+OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */
+
+OP_ADDI,/* A B sC R[A] := R[B] + sC */
+
+OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */
+OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */
+OP_MULK,/* A B C R[A] := R[B] * K[C]:number */
+OP_MODK,/* A B C R[A] := R[B] % K[C]:number */
+OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */
+OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */
+OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */
+
+OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */
+OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */
+OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */
+
+OP_SHRI,/* A B sC R[A] := R[B] >> sC */
+OP_SHLI,/* A B sC R[A] := sC << R[B] */
+
+OP_ADD,/* A B C R[A] := R[B] + R[C] */
+OP_SUB,/* A B C R[A] := R[B] - R[C] */
+OP_MUL,/* A B C R[A] := R[B] * R[C] */
+OP_MOD,/* A B C R[A] := R[B] % R[C] */
+OP_POW,/* A B C R[A] := R[B] ^ R[C] */
+OP_DIV,/* A B C R[A] := R[B] / R[C] */
+OP_IDIV,/* A B C R[A] := R[B] // R[C] */
+
+OP_BAND,/* A B C R[A] := R[B] & R[C] */
+OP_BOR,/* A B C R[A] := R[B] | R[C] */
+OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */
+OP_SHL,/* A B C R[A] := R[B] << R[C] */
+OP_SHR,/* A B C R[A] := R[B] >> R[C] */
+
+OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */
+OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */
+OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */
+
+OP_UNM,/* A B R[A] := -R[B] */
+OP_BNOT,/* A B R[A] := ~R[B] */
+OP_NOT,/* A B R[A] := not R[B] */
+OP_LEN,/* A B R[A] := #R[B] (length operator) */
+
+OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */
+
+OP_CLOSE,/* A close all upvalues >= R[A] */
+OP_TBC,/* A mark variable A "to be closed" */
+OP_JMP,/* sJ pc += sJ */
+OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */
+OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */
+OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */
+
+OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */
+OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */
+OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */
+OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */
+OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */
+OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */
+
+OP_TEST,/* A k if (not R[A] == k) then pc++ */
+OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */
+
+OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
+OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */
+
+OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */
+OP_RETURN0,/* return */
+OP_RETURN1,/* A return R[A] */
+
+OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */
+OP_FORPREP,/* A Bx <check values and prepare counters>;
+ if not to run then pc+=Bx+1; */
+
+OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */
+OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */
+OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */
+
+OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */
+
+OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */
+
+OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */
-OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
-
-OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
-
-OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
+OP_VARARGPREP,/*A (adjust vararg parameters) */
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
} OpCode;
-#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
+#define NUM_OPCODES ((int)(OP_EXTRAARG) + 1)
/*===========================================================================
Notes:
- (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
- set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
- OP_SETLIST) may use 'top'.
- (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
+ (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean
+ value, in a code equivalent to (not cond ? false : true). (It
+ produces false and skips the next instruction producing true.)
+
+ (*) Opcodes OP_MMBIN and variants follow each arithmetic and
+ bitwise opcode. If the operation succeeds, it skips this next
+ opcode. Otherwise, this opcode calls the corresponding metamethod.
+
+ (*) Opcode OP_TESTSET is used in short-circuit expressions that need
+ both to jump and to produce a value, such as (a = b or c).
+
+ (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
+ 'top' is set to last_result+1, so next open instruction (OP_CALL,
+ OP_RETURN*, OP_SETLIST) may use 'top'.
+
+ (*) In OP_VARARG, if (C == 0) then use actual number of varargs and
set top (like in OP_CALL with C == 0).
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
- (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next
- 'instruction' is EXTRAARG(real C).
+ (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
+ OP_EXTRAARG.
- (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
+ (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
+ real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
+ bits of C).
- (*) For comparisons, A specifies what condition the test should accept
+ (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
+ power of 2) plus 1, or zero for size zero. If not k, the array size
+ is C. Otherwise, the array size is EXTRAARG _ C.
+
+ (*) For comparisons, k specifies what condition the test should accept
(true or false).
+ (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
+ (the constant is the first operand).
+
(*) All 'skips' (pc++) assume that next instruction is a jump.
+ (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
+ function builds upvalues, which may need to be closed. C > 0 means
+ the function is vararg, so that its 'func' must be corrected before
+ returning; in this case, (C - 1) is its number of fixed parameters.
+
+ (*) In comparisons with an immediate operand, C signals whether the
+ original operand was a float. (It must be corrected in case of
+ metamethods.)
+
===========================================================================*/
/*
** masks for instruction properties. The format is:
-** bits 0-1: op mode
-** bits 2-3: C arg mode
-** bits 4-5: B arg mode
-** bit 6: instruction set register A
-** bit 7: operator is a test (next instruction must be a jump)
+** bits 0-2: op mode
+** bit 3: instruction set register A
+** bit 4: operator is a test (next instruction must be a jump)
+** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
+** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
+** bit 7: instruction is an MM instruction (call a metamethod)
*/
-enum OpArgMask {
- OpArgN, /* argument is not used */
- OpArgU, /* argument is used */
- OpArgR, /* argument is a register or a jump offset */
- OpArgK /* argument is a constant or register/constant */
-};
+LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
-LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
+#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
+#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
+#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
+#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
+#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
+#define testMMMode(m) (luaP_opmodes[m] & (1 << 7))
-#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
-#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
-#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
-#define testAMode(m) (luaP_opmodes[m] & (1 << 6))
-#define testTMode(m) (luaP_opmodes[m] & (1 << 7))
+/* "out top" (set top for next instruction) */
+#define isOT(i) \
+ ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
+ GET_OPCODE(i) == OP_TAILCALL)
+/* "in top" (uses top from previous instruction) */
+#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
-LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
+#define opmode(mm,ot,it,t,a,m) \
+ (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m))
/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH 50
-
#endif