summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/bimg/src/image.cpp
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/bimg/src/image.cpp')
-rw-r--r--3rdparty/bimg/src/image.cpp3750
1 files changed, 3750 insertions, 0 deletions
diff --git a/3rdparty/bimg/src/image.cpp b/3rdparty/bimg/src/image.cpp
new file mode 100644
index 00000000000..9b34985cb16
--- /dev/null
+++ b/3rdparty/bimg/src/image.cpp
@@ -0,0 +1,3750 @@
+/*
+ * Copyright 2011-2017 Branimir Karadzic. All rights reserved.
+ * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
+ */
+
+#include "bimg_p.h"
+#include <bx/hash.h>
+
+namespace bimg
+{
+ static const ImageBlockInfo s_imageBlockInfo[] =
+ {
+ // +-------------------------------------------- bits per pixel
+ // | +----------------------------------------- block width
+ // | | +-------------------------------------- block height
+ // | | | +---------------------------------- block size
+ // | | | | +------------------------------- min blocks x
+ // | | | | | +---------------------------- min blocks y
+ // | | | | | | +------------------------ depth bits
+ // | | | | | | | +--------------------- stencil bits
+ // | | | | | | | | +---+---+---+----- r, g, b, a bits
+ // | | | | | | | | r g b a +-- encoding type
+ // | | | | | | | | | | | | |
+ { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC1
+ { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC2
+ { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC3
+ { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC4
+ { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC5
+ { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC6H
+ { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC7
+ { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC1
+ { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2
+ { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2A
+ { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2A1
+ { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC12
+ { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC14
+ { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC12A
+ { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC14A
+ { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC22
+ { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC24
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Count) }, // Unknown
+ { 1, 8, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R1
+ { 8, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 8, uint8_t(bx::EncodingType::Unorm) }, // A8
+ { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R8
+ { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R8I
+ { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R8U
+ { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // R8S
+ { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R16
+ { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R16I
+ { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R16U
+ { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // R16F
+ { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // R16S
+ { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R32I
+ { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R32U
+ { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // R32F
+ { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // RG8
+ { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG8I
+ { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG8U
+ { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // RG8S
+ { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // RG16
+ { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG16I
+ { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG16U
+ { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Float) }, // RG16F
+ { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // RG16S
+ { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG32I
+ { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG32U
+ { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Float) }, // RG32F
+ { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Unorm) }, // RGB8
+ { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Int ) }, // RGB8I
+ { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Uint ) }, // RGB8U
+ { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Snorm) }, // RGB8S
+ { 32, 1, 1, 4, 1, 1, 0, 0, 9, 9, 9, 5, uint8_t(bx::EncodingType::Float) }, // RGB9E5F
+ { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Unorm) }, // BGRA8
+ { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Unorm) }, // RGBA8
+ { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Int ) }, // RGBA8I
+ { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Uint ) }, // RGBA8U
+ { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Snorm) }, // RGBA8S
+ { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Unorm) }, // RGBA16
+ { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Int ) }, // RGBA16I
+ { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Uint ) }, // RGBA16U
+ { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Float) }, // RGBA16F
+ { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Snorm) }, // RGBA16S
+ { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Int ) }, // RGBA32I
+ { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Uint ) }, // RGBA32U
+ { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Float) }, // RGBA32F
+ { 16, 1, 1, 2, 1, 1, 0, 0, 5, 6, 5, 0, uint8_t(bx::EncodingType::Unorm) }, // R5G6B5
+ { 16, 1, 1, 2, 1, 1, 0, 0, 4, 4, 4, 4, uint8_t(bx::EncodingType::Unorm) }, // RGBA4
+ { 16, 1, 1, 2, 1, 1, 0, 0, 5, 5, 5, 1, uint8_t(bx::EncodingType::Unorm) }, // RGB5A1
+ { 32, 1, 1, 4, 1, 1, 0, 0, 10, 10, 10, 2, uint8_t(bx::EncodingType::Unorm) }, // RGB10A2
+ { 32, 1, 1, 4, 1, 1, 0, 0, 11, 11, 10, 0, uint8_t(bx::EncodingType::Unorm) }, // RG11B10F
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Count) }, // UnknownDepth
+ { 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D16
+ { 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D24
+ { 32, 1, 1, 4, 1, 1, 24, 8, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D24S8
+ { 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D32
+ { 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D16F
+ { 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D24F
+ { 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D32F
+ { 8, 1, 1, 1, 1, 1, 0, 8, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D0S8
+ };
+ BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageBlockInfo) );
+
+ static const char* s_textureFormatName[] =
+ {
+ "BC1", // BC1
+ "BC2", // BC2
+ "BC3", // BC3
+ "BC4", // BC4
+ "BC5", // BC5
+ "BC6H", // BC6H
+ "BC7", // BC7
+ "ETC1", // ETC1
+ "ETC2", // ETC2
+ "ETC2A", // ETC2A
+ "ETC2A1", // ETC2A1
+ "PTC12", // PTC12
+ "PTC14", // PTC14
+ "PTC12A", // PTC12A
+ "PTC14A", // PTC14A
+ "PTC22", // PTC22
+ "PTC24", // PTC24
+ "<unknown>", // Unknown
+ "R1", // R1
+ "A8", // A8
+ "R8", // R8
+ "R8I", // R8I
+ "R8U", // R8U
+ "R8S", // R8S
+ "R16", // R16
+ "R16I", // R16I
+ "R16U", // R16U
+ "R16F", // R16F
+ "R16S", // R16S
+ "R32I", // R32I
+ "R32U", // R32U
+ "R32F", // R32F
+ "RG8", // RG8
+ "RG8I", // RG8I
+ "RG8U", // RG8U
+ "RG8S", // RG8S
+ "RG16", // RG16
+ "RG16I", // RG16I
+ "RG16U", // RG16U
+ "RG16F", // RG16F
+ "RG16S", // RG16S
+ "RG32I", // RG32I
+ "RG32U", // RG32U
+ "RG32F", // RG32F
+ "RGB8", // RGB8
+ "RGB8I", // RGB8I
+ "RGB8U", // RGB8U
+ "RGB8S", // RGB8S
+ "RGB9E5", // RGB9E5F
+ "BGRA8", // BGRA8
+ "RGBA8", // RGBA8
+ "RGBA8I", // RGBA8I
+ "RGBA8U", // RGBA8U
+ "RGBA8S", // RGBA8S
+ "RGBA16", // RGBA16
+ "RGBA16I", // RGBA16I
+ "RGBA16U", // RGBA16U
+ "RGBA16F", // RGBA16F
+ "RGBA16S", // RGBA16S
+ "RGBA32I", // RGBA32I
+ "RGBA32U", // RGBA32U
+ "RGBA32F", // RGBA32F
+ "R5G6B5", // R5G6B5
+ "RGBA4", // RGBA4
+ "RGB5A1", // RGB5A1
+ "RGB10A2", // RGB10A2
+ "RG11B10F", // RG11B10F
+ "<unknown>", // UnknownDepth
+ "D16", // D16
+ "D24", // D24
+ "D24S8", // D24S8
+ "D32", // D32
+ "D16F", // D16F
+ "D24F", // D24F
+ "D32F", // D32F
+ "D0S8", // D0S8
+ };
+ BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormatName) );
+
+ bool isCompressed(TextureFormat::Enum _format)
+ {
+ return _format < TextureFormat::Unknown;
+ }
+
+ bool isColor(TextureFormat::Enum _format)
+ {
+ return _format > TextureFormat::Unknown
+ && _format < TextureFormat::UnknownDepth
+ ;
+ }
+
+ bool isDepth(TextureFormat::Enum _format)
+ {
+ return _format > TextureFormat::UnknownDepth
+ && _format < TextureFormat::Count
+ ;
+ }
+
+ bool isValid(TextureFormat::Enum _format)
+ {
+ return _format != TextureFormat::Unknown
+ && _format != TextureFormat::UnknownDepth
+ && _format != TextureFormat::Count
+ ;
+ }
+
+ uint8_t getBitsPerPixel(TextureFormat::Enum _format)
+ {
+ return s_imageBlockInfo[_format].bitsPerPixel;
+ }
+
+ const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format)
+ {
+ return s_imageBlockInfo[_format];
+ }
+
+ uint8_t getBlockSize(TextureFormat::Enum _format)
+ {
+ return s_imageBlockInfo[_format].blockSize;
+ }
+
+ const char* getName(TextureFormat::Enum _format)
+ {
+ return s_textureFormatName[_format];
+ }
+
+ TextureFormat::Enum getFormat(const char* _name)
+ {
+ for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
+ {
+ const TextureFormat::Enum fmt = TextureFormat::Enum(ii);
+ if (isValid(fmt) )
+ {
+ if (0 == bx::strCmpI(s_textureFormatName[ii], _name) )
+ {
+ return fmt;
+ }
+ }
+ }
+
+ return TextureFormat::Unknown;
+ }
+
+ uint8_t imageGetNumMips(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth)
+ {
+ const ImageBlockInfo& blockInfo = getBlockInfo(_format);
+ const uint16_t blockWidth = blockInfo.blockWidth;
+ const uint16_t blockHeight = blockInfo.blockHeight;
+ const uint16_t minBlockX = blockInfo.minBlockX;
+ const uint16_t minBlockY = blockInfo.minBlockY;
+
+ _width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth )*blockWidth);
+ _height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
+ _depth = bx::uint16_max(1, _depth);
+
+ uint8_t numMips = calcNumMips(true, _width, _height, _depth);
+
+ return numMips;
+ }
+
+ uint32_t imageGetSize(TextureInfo* _info, uint16_t _width, uint16_t _height, uint16_t _depth, bool _cubeMap, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format)
+ {
+ const ImageBlockInfo& blockInfo = getBlockInfo(_format);
+ const uint8_t bpp = blockInfo.bitsPerPixel;
+ const uint16_t blockWidth = blockInfo.blockWidth;
+ const uint16_t blockHeight = blockInfo.blockHeight;
+ const uint16_t minBlockX = blockInfo.minBlockX;
+ const uint16_t minBlockY = blockInfo.minBlockY;
+
+ _width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
+ _height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
+ _depth = bx::uint16_max(1, _depth);
+ const uint8_t numMips = calcNumMips(_hasMips, _width, _height, _depth);
+ const uint32_t sides = _cubeMap ? 6 : 1;
+
+ uint32_t width = _width;
+ uint32_t height = _height;
+ uint32_t depth = _depth;
+ uint32_t size = 0;
+
+ for (uint32_t lod = 0; lod < numMips; ++lod)
+ {
+ width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
+ height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
+ depth = bx::uint32_max(1, depth);
+
+ size += uint32_t(uint64_t(width*height*depth)*bpp/8 * sides);
+
+ width >>= 1;
+ height >>= 1;
+ depth >>= 1;
+ }
+
+ size *= _numLayers;
+
+ if (NULL != _info)
+ {
+ _info->format = _format;
+ _info->width = _width;
+ _info->height = _height;
+ _info->depth = _depth;
+ _info->numMips = numMips;
+ _info->numLayers = _numLayers;
+ _info->cubeMap = _cubeMap;
+ _info->storageSize = size;
+ _info->bitsPerPixel = bpp;
+ }
+
+ return size;
+ }
+
+ void imageSolid(void* _dst, uint32_t _width, uint32_t _height, uint32_t _solid)
+ {
+ uint32_t* dst = (uint32_t*)_dst;
+ for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii)
+ {
+ *dst++ = _solid;
+ }
+ }
+
+ void imageCheckerboard(void* _dst, uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1)
+ {
+ uint32_t* dst = (uint32_t*)_dst;
+ for (uint32_t yy = 0; yy < _height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < _width; ++xx)
+ {
+ uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0;
+ *dst++ = abgr;
+ }
+ }
+ }
+
+ void imageRgba8Downsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstWidth = _width/2;
+ const uint32_t dstHeight = _height/2;
+
+ if (0 == dstWidth
+ || 0 == dstHeight)
+ {
+ return;
+ }
+
+ uint8_t* dst = (uint8_t*)_dst;
+ const uint8_t* src = (const uint8_t*)_src;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz)
+ {
+ for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
+ {
+ const uint8_t* rgba = src;
+ for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 8, dst += 4)
+ {
+ float rr = bx::fpow(rgba[ 0], 2.2f);
+ float gg = bx::fpow(rgba[ 1], 2.2f);
+ float bb = bx::fpow(rgba[ 2], 2.2f);
+ float aa = rgba[ 3];
+ rr += bx::fpow(rgba[ 4], 2.2f);
+ gg += bx::fpow(rgba[ 5], 2.2f);
+ bb += bx::fpow(rgba[ 6], 2.2f);
+ aa += rgba[ 7];
+ rr += bx::fpow(rgba[_srcPitch+0], 2.2f);
+ gg += bx::fpow(rgba[_srcPitch+1], 2.2f);
+ bb += bx::fpow(rgba[_srcPitch+2], 2.2f);
+ aa += rgba[_srcPitch+3];
+ rr += bx::fpow(rgba[_srcPitch+4], 2.2f);
+ gg += bx::fpow(rgba[_srcPitch+5], 2.2f);
+ bb += bx::fpow(rgba[_srcPitch+6], 2.2f);
+ aa += rgba[_srcPitch+7];
+
+ rr *= 0.25f;
+ gg *= 0.25f;
+ bb *= 0.25f;
+ aa *= 0.25f;
+ rr = bx::fpow(rr, 1.0f/2.2f);
+ gg = bx::fpow(gg, 1.0f/2.2f);
+ bb = bx::fpow(bb, 1.0f/2.2f);
+ dst[0] = (uint8_t)rr;
+ dst[1] = (uint8_t)gg;
+ dst[2] = (uint8_t)bb;
+ dst[3] = (uint8_t)aa;
+ }
+ }
+ }
+ }
+
+ void imageRgba8Downsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstWidth = _width/2;
+ const uint32_t dstHeight = _height/2;
+
+ if (0 == dstWidth
+ || 0 == dstHeight)
+ {
+ return;
+ }
+
+ uint8_t* dst = (uint8_t*)_dst;
+ const uint8_t* src = (const uint8_t*)_src;
+
+ using namespace bx;
+ const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f);
+ const simd128_t pack = simd_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f);
+ const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000);
+ const simd128_t pmask = simd_ild(0xff, 0x7f80, 0xff0000, 0x7f800000);
+ const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000);
+ const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
+ const simd128_t gamma = simd_ld(1.0f/2.2f, 1.0f/2.2f, 1.0f/2.2f, 1.0f);
+ const simd128_t linear = simd_ld(2.2f, 2.2f, 2.2f, 1.0f);
+ const simd128_t quater = simd_splat(0.25f);
+
+ for (uint32_t zz = 0; zz < _depth; ++zz)
+ {
+ for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
+ {
+ const uint8_t* rgba = src;
+ for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 8, dst += 4)
+ {
+ const simd128_t abgr0 = simd_splat(rgba);
+ const simd128_t abgr1 = simd_splat(rgba+4);
+ const simd128_t abgr2 = simd_splat(rgba+_srcPitch);
+ const simd128_t abgr3 = simd_splat(rgba+_srcPitch+4);
+
+ const simd128_t abgr0m = simd_and(abgr0, umask);
+ const simd128_t abgr1m = simd_and(abgr1, umask);
+ const simd128_t abgr2m = simd_and(abgr2, umask);
+ const simd128_t abgr3m = simd_and(abgr3, umask);
+ const simd128_t abgr0x = simd_xor(abgr0m, wflip);
+ const simd128_t abgr1x = simd_xor(abgr1m, wflip);
+ const simd128_t abgr2x = simd_xor(abgr2m, wflip);
+ const simd128_t abgr3x = simd_xor(abgr3m, wflip);
+ const simd128_t abgr0f = simd_itof(abgr0x);
+ const simd128_t abgr1f = simd_itof(abgr1x);
+ const simd128_t abgr2f = simd_itof(abgr2x);
+ const simd128_t abgr3f = simd_itof(abgr3x);
+ const simd128_t abgr0c = simd_add(abgr0f, wadd);
+ const simd128_t abgr1c = simd_add(abgr1f, wadd);
+ const simd128_t abgr2c = simd_add(abgr2f, wadd);
+ const simd128_t abgr3c = simd_add(abgr3f, wadd);
+ const simd128_t abgr0n = simd_mul(abgr0c, unpack);
+ const simd128_t abgr1n = simd_mul(abgr1c, unpack);
+ const simd128_t abgr2n = simd_mul(abgr2c, unpack);
+ const simd128_t abgr3n = simd_mul(abgr3c, unpack);
+
+ const simd128_t abgr0l = simd_pow(abgr0n, linear);
+ const simd128_t abgr1l = simd_pow(abgr1n, linear);
+ const simd128_t abgr2l = simd_pow(abgr2n, linear);
+ const simd128_t abgr3l = simd_pow(abgr3n, linear);
+
+ const simd128_t sum0 = simd_add(abgr0l, abgr1l);
+ const simd128_t sum1 = simd_add(abgr2l, abgr3l);
+ const simd128_t sum2 = simd_add(sum0, sum1);
+ const simd128_t avg0 = simd_mul(sum2, quater);
+ const simd128_t avg1 = simd_pow(avg0, gamma);
+
+ const simd128_t avg2 = simd_mul(avg1, pack);
+ const simd128_t ftoi0 = simd_ftoi(avg2);
+ const simd128_t ftoi1 = simd_and(ftoi0, pmask);
+ const simd128_t zwxy = simd_swiz_zwxy(ftoi1);
+ const simd128_t tmp0 = simd_or(ftoi1, zwxy);
+ const simd128_t yyyy = simd_swiz_yyyy(tmp0);
+ const simd128_t tmp1 = simd_iadd(yyyy, yyyy);
+ const simd128_t result = simd_or(tmp0, tmp1);
+
+ simd_stx(dst, result);
+ }
+ }
+ }
+ }
+
+ void imageRgba32fToLinear(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
+ {
+ uint8_t* dst = ( uint8_t*)_dst;
+ const uint8_t* src = (const uint8_t*)_src;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz)
+ {
+ for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _width*16)
+ {
+ for (uint32_t xx = 0; xx < _width; ++xx)
+ {
+ const uint32_t offset = xx * 16;
+ float* fd = ( float*)(dst + offset);
+ const float* fs = (const float*)(src + offset);
+
+ fd[0] = bx::fpow(fs[0], 1.0f/2.2f);
+ fd[1] = bx::fpow(fs[1], 1.0f/2.2f);
+ fd[2] = bx::fpow(fs[2], 1.0f/2.2f);
+ fd[3] = fs[3];
+ }
+ }
+ }
+ }
+
+ void imageRgba32fToGamma(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
+ {
+ uint8_t* dst = ( uint8_t*)_dst;
+ const uint8_t* src = (const uint8_t*)_src;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz)
+ {
+ for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _width*16)
+ {
+ for (uint32_t xx = 0; xx < _width; ++xx)
+ {
+ const uint32_t offset = xx * 16;
+ float* fd = ( float*)(dst + offset);
+ const float* fs = (const float*)(src + offset);
+
+ fd[0] = bx::fpow(fs[0], 2.2f);
+ fd[1] = bx::fpow(fs[1], 2.2f);
+ fd[2] = bx::fpow(fs[2], 2.2f);
+ fd[3] = fs[3];
+ }
+ }
+ }
+ }
+
+ void imageRgba32fLinearDownsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstWidth = _width/2;
+ const uint32_t dstHeight = _height/2;
+
+ if (0 == dstWidth
+ || 0 == dstHeight)
+ {
+ return;
+ }
+
+ const uint8_t* src = (const uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz)
+ {
+ for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
+ {
+ const float* rgba0 = (const float*)&src[0];
+ const float* rgba1 = (const float*)&src[_srcPitch];
+ for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
+ {
+ float xyz[4];
+
+ xyz[0] = rgba0[0];
+ xyz[1] = rgba0[1];
+ xyz[2] = rgba0[2];
+ xyz[3] = rgba0[3];
+
+ xyz[0] += rgba0[4];
+ xyz[1] += rgba0[5];
+ xyz[2] += rgba0[6];
+ xyz[3] += rgba0[7];
+
+ xyz[0] += rgba1[0];
+ xyz[1] += rgba1[1];
+ xyz[2] += rgba1[2];
+ xyz[3] += rgba1[3];
+
+ xyz[0] += rgba1[4];
+ xyz[1] += rgba1[5];
+ xyz[2] += rgba1[6];
+ xyz[3] += rgba1[7];
+
+ xyz[0] *= 0.25f;
+ xyz[1] *= 0.25f;
+ xyz[2] *= 0.25f;
+ xyz[3] *= 0.25f;
+
+ bx::packRgba32F(dst, xyz);
+ }
+ }
+ }
+ }
+
+ void imageRgba32fLinearDownsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src)
+ {
+ imageRgba32fLinearDownsample2x2Ref(_dst, _width, _height, _depth, _srcPitch, _src);
+ }
+
+ void imageRgba32fDownsample2x2NormalMapRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstWidth = _width/2;
+ const uint32_t dstHeight = _height/2;
+
+ if (0 == dstWidth
+ || 0 == dstHeight)
+ {
+ return;
+ }
+
+ const uint8_t* src = (const uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep)
+ {
+ const float* rgba0 = (const float*)&src[0];
+ const float* rgba1 = (const float*)&src[_srcPitch];
+ for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16)
+ {
+ float xyz[3];
+
+ xyz[0] = rgba0[0];
+ xyz[1] = rgba0[1];
+ xyz[2] = rgba0[2];
+
+ xyz[0] += rgba0[4];
+ xyz[1] += rgba0[5];
+ xyz[2] += rgba0[6];
+
+ xyz[0] += rgba1[0];
+ xyz[1] += rgba1[1];
+ xyz[2] += rgba1[2];
+
+ xyz[0] += rgba1[4];
+ xyz[1] += rgba1[5];
+ xyz[2] += rgba1[6];
+
+ bx::vec3Norm( (float*)dst, xyz);
+ }
+ }
+ }
+
+ void imageRgba32fDownsample2x2NormalMap(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src)
+ {
+ imageRgba32fDownsample2x2NormalMapRef(_dst, _width, _height, _srcPitch, _src);
+ }
+
+ void imageSwizzleBgra8Ref(void* _dst, uint32_t _dstPitch, uint32_t _width, uint32_t _height, const void* _src, uint32_t _srcPitch)
+ {
+ const uint8_t* srcData = (uint8_t*) _src;
+ uint8_t* dstData = (uint8_t*)_dst;
+
+ for (uint32_t yy = 0; yy < _height; ++yy, srcData += _srcPitch, dstData += _dstPitch)
+ {
+ const uint8_t* src = srcData;
+ uint8_t* dst = dstData;
+
+ for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4)
+ {
+ uint8_t rr = src[0];
+ uint8_t gg = src[1];
+ uint8_t bb = src[2];
+ uint8_t aa = src[3];
+ dst[0] = bb;
+ dst[1] = gg;
+ dst[2] = rr;
+ dst[3] = aa;
+ }
+ }
+ }
+
+ void imageSwizzleBgra8(void* _dst, uint32_t _dstPitch, uint32_t _width, uint32_t _height, const void* _src, uint32_t _srcPitch)
+ {
+ // Test can we do four 4-byte pixels at the time.
+ if (0 != (_width&0x3)
+ || _width < 4
+ || !bx::isAligned(_src, 16)
+ || !bx::isAligned(_dst, 16) )
+ {
+ BX_WARN(false, "Image swizzle is taking slow path.");
+ BX_WARN(bx::isAligned(_src, 16), "Source %p is not 16-byte aligned.", _src);
+ BX_WARN(bx::isAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst);
+ BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width);
+ imageSwizzleBgra8Ref(_dst, _dstPitch, _width, _height, _src, _srcPitch);
+ return;
+ }
+
+ using namespace bx;
+
+ const simd128_t mf0f0 = simd_isplat(0xff00ff00);
+ const simd128_t m0f0f = simd_isplat(0x00ff00ff);
+ const uint32_t width = _width/4;
+
+ const uint8_t* srcData = (uint8_t*) _src;
+ uint8_t* dstData = (uint8_t*)_dst;
+
+ for (uint32_t yy = 0; yy < _height; ++yy, srcData += _srcPitch, dstData += _dstPitch)
+ {
+ const uint8_t* src = srcData;
+ uint8_t* dst = dstData;
+
+ for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16)
+ {
+ const simd128_t tabgr = simd_ld(src);
+ const simd128_t t00ab = simd_srl(tabgr, 16);
+ const simd128_t tgr00 = simd_sll(tabgr, 16);
+ const simd128_t tgrab = simd_or(t00ab, tgr00);
+ const simd128_t ta0g0 = simd_and(tabgr, mf0f0);
+ const simd128_t t0r0b = simd_and(tgrab, m0f0f);
+ const simd128_t targb = simd_or(ta0g0, t0r0b);
+ simd_st(dst, targb);
+ }
+ }
+ }
+
+ void imageCopy(void* _dst, uint32_t _height, uint32_t _srcPitch, const void* _src, uint32_t _dstPitch)
+ {
+ const uint32_t pitch = bx::uint32_min(_srcPitch, _dstPitch);
+ const uint8_t* src = (uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ bx::memCopy(dst, src, pitch, _height, _srcPitch, _dstPitch);
+ }
+
+ void imageCopy(void* _dst, uint32_t _width, uint32_t _height, uint32_t _bpp, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstPitch = _width*_bpp/8;
+ imageCopy(_dst, _height, _srcPitch, _src, dstPitch);
+ }
+
+ struct PackUnpack
+ {
+ PackFn pack;
+ UnpackFn unpack;
+ };
+
+ static const PackUnpack s_packUnpack[] =
+ {
+ { NULL, NULL }, // BC1
+ { NULL, NULL }, // BC2
+ { NULL, NULL }, // BC3
+ { NULL, NULL }, // BC4
+ { NULL, NULL }, // BC5
+ { NULL, NULL }, // BC6H
+ { NULL, NULL }, // BC7
+ { NULL, NULL }, // ETC1
+ { NULL, NULL }, // ETC2
+ { NULL, NULL }, // ETC2A
+ { NULL, NULL }, // ETC2A1
+ { NULL, NULL }, // PTC12
+ { NULL, NULL }, // PTC14
+ { NULL, NULL }, // PTC12A
+ { NULL, NULL }, // PTC14A
+ { NULL, NULL }, // PTC22
+ { NULL, NULL }, // PTC24
+ { NULL, NULL }, // Unknown
+ { NULL, NULL }, // R1
+ { bx::packR8, bx::unpackR8 }, // A8
+ { bx::packR8, bx::unpackR8 }, // R8
+ { bx::packR8I, bx::unpackR8I }, // R8I
+ { bx::packR8U, bx::unpackR8U }, // R8U
+ { bx::packR8S, bx::unpackR8S }, // R8S
+ { bx::packR16, bx::unpackR16 }, // R16
+ { bx::packR16I, bx::unpackR16I }, // R16I
+ { bx::packR16U, bx::unpackR16U }, // R16U
+ { bx::packR16F, bx::unpackR16F }, // R16F
+ { bx::packR16S, bx::unpackR16S }, // R16S
+ { bx::packR32I, bx::unpackR32I }, // R32I
+ { bx::packR32U, bx::unpackR32U }, // R32U
+ { bx::packR32F, bx::unpackR32F }, // R32F
+ { bx::packRg8, bx::unpackRg8 }, // RG8
+ { bx::packRg8I, bx::unpackRg8I }, // RG8I
+ { bx::packRg8U, bx::unpackRg8U }, // RG8U
+ { bx::packRg8S, bx::unpackRg8S }, // RG8S
+ { bx::packRg16, bx::unpackRg16 }, // RG16
+ { bx::packRg16I, bx::unpackRg16I }, // RG16I
+ { bx::packRg16U, bx::unpackRg16U }, // RG16U
+ { bx::packRg16F, bx::unpackRg16F }, // RG16F
+ { bx::packRg16S, bx::unpackRg16S }, // RG16S
+ { bx::packRg32I, bx::unpackRg32I }, // RG32I
+ { bx::packRg32U, bx::unpackRg32U }, // RG32U
+ { bx::packRg32F, bx::unpackRg32F }, // RG32F
+ { bx::packRgb8, bx::unpackRgb8 }, // RGB8
+ { bx::packRgb8S, bx::unpackRgb8S }, // RGB8S
+ { bx::packRgb8I, bx::unpackRgb8I }, // RGB8I
+ { bx::packRgb8U, bx::unpackRgb8U }, // RGB8U
+ { bx::packRgb9E5F, bx::unpackRgb9E5F }, // RGB9E5F
+ { bx::packBgra8, bx::unpackBgra8 }, // BGRA8
+ { bx::packRgba8, bx::unpackRgba8 }, // RGBA8
+ { bx::packRgba8I, bx::unpackRgba8I }, // RGBA8I
+ { bx::packRgba8U, bx::unpackRgba8U }, // RGBA8U
+ { bx::packRgba8S, bx::unpackRgba8S }, // RGBA8S
+ { bx::packRgba16, bx::unpackRgba16 }, // RGBA16
+ { bx::packRgba16I, bx::unpackRgba16I }, // RGBA16I
+ { bx::packRgba16U, bx::unpackRgba16U }, // RGBA16U
+ { bx::packRgba16F, bx::unpackRgba16F }, // RGBA16F
+ { bx::packRgba16S, bx::unpackRgba16S }, // RGBA16S
+ { bx::packRgba32I, bx::unpackRgba32I }, // RGBA32I
+ { bx::packRgba32U, bx::unpackRgba32U }, // RGBA32U
+ { bx::packRgba32F, bx::unpackRgba32F }, // RGBA32F
+ { bx::packR5G6B5, bx::unpackR5G6B5 }, // R5G6B5
+ { bx::packRgba4, bx::unpackRgba4 }, // RGBA4
+ { bx::packRgb5a1, bx::unpackRgb5a1 }, // RGB5A1
+ { bx::packRgb10A2, bx::unpackRgb10A2 }, // RGB10A2
+ { bx::packRG11B10F, bx::unpackRG11B10F }, // RG11B10F
+ { NULL, NULL }, // UnknownDepth
+ { bx::packR16, bx::unpackR16 }, // D16
+ { bx::packR24, bx::unpackR24 }, // D24
+ { bx::packR24G8, bx::unpackR24G8 }, // D24S8
+ { NULL, NULL }, // D32
+ { bx::packR16F, bx::unpackR16F }, // D16F
+ { NULL, NULL }, // D24F
+ { bx::packR32F, bx::unpackR32F }, // D32F
+ { bx::packR8, bx::unpackR8 }, // D0S8
+ };
+ BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_packUnpack) );
+
+ PackFn getPack(TextureFormat::Enum _format)
+ {
+ return s_packUnpack[_format].pack;
+ }
+
+ UnpackFn getUnpack(TextureFormat::Enum _format)
+ {
+ return s_packUnpack[_format].unpack;
+ }
+
+ bool imageConvert(TextureFormat::Enum _dstFormat, TextureFormat::Enum _srcFormat)
+ {
+ UnpackFn unpack = s_packUnpack[_srcFormat].unpack;
+ PackFn pack = s_packUnpack[_dstFormat].pack;
+ return NULL != pack
+ && NULL != unpack
+ ;
+ }
+
+ void imageConvert(void* _dst, uint32_t _bpp, PackFn _pack, const void* _src, UnpackFn _unpack, uint32_t _size)
+ {
+ const uint8_t* src = (uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ const uint32_t size = _size * 8 / _bpp;
+
+ for (uint32_t ii = 0; ii < size; ++ii)
+ {
+ float rgba[4];
+ _unpack(rgba, &src[ii*_bpp/8]);
+ _pack(&dst[ii*_bpp/8], rgba);
+ }
+ }
+
+ void imageConvert(void* _dst, uint32_t _dstBpp, PackFn _pack, const void* _src, uint32_t _srcBpp, UnpackFn _unpack, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch)
+ {
+ const uint8_t* src = (uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ const uint32_t dstPitch = _width * _dstBpp / 8;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz)
+ {
+ for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += dstPitch)
+ {
+ for (uint32_t xx = 0; xx < _width; ++xx)
+ {
+ float rgba[4];
+ _unpack(rgba, &src[xx*_srcBpp/8]);
+ _pack(&dst[xx*_dstBpp/8], rgba);
+ }
+ }
+ }
+ }
+
+ bool imageConvert(void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch)
+ {
+ UnpackFn unpack = s_packUnpack[_srcFormat].unpack;
+ PackFn pack = s_packUnpack[_dstFormat].pack;
+ if (NULL == pack
+ || NULL == unpack)
+ {
+ return false;
+ }
+
+ const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
+ const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel;
+ imageConvert(_dst, dstBpp, pack, _src, srcBpp, unpack, _width, _height, _depth, _srcPitch);
+
+ return true;
+ }
+
+ bool imageConvert(void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _depth)
+ {
+ const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
+
+ if (_dstFormat == _srcFormat)
+ {
+ bx::memCopy(_dst, _src, _width*_height*_depth*srcBpp/8);
+ return true;
+ }
+
+ return imageConvert(_dst, _dstFormat, _src, _srcFormat, _width, _height, _depth, _width*srcBpp/8);
+ }
+
+ ImageContainer* imageConvert(bx::AllocatorI* _allocator, TextureFormat::Enum _dstFormat, const ImageContainer& _input)
+ {
+ ImageContainer* output = imageAlloc(_allocator
+ , _dstFormat
+ , uint16_t(_input.m_width)
+ , uint16_t(_input.m_height)
+ , uint16_t(_input.m_depth)
+ , _input.m_numLayers
+ , _input.m_cubeMap
+ , 1 < _input.m_numMips
+ );
+
+ const uint16_t numSides = _input.m_numLayers * (_input.m_cubeMap ? 6 : 1);
+
+ for (uint16_t side = 0; side < numSides; ++side)
+ {
+ for (uint8_t lod = 0, num = _input.m_numMips; lod < num; ++lod)
+ {
+ ImageMip mip;
+ if (imageGetRawData(_input, side, lod, _input.m_data, _input.m_size, mip) )
+ {
+ ImageMip dstMip;
+ imageGetRawData(*output, side, lod, output->m_data, output->m_size, dstMip);
+ uint8_t* dstData = const_cast<uint8_t*>(dstMip.m_data);
+
+ bool ok = imageConvert(dstData
+ , _dstFormat
+ , mip.m_data
+ , mip.m_format
+ , mip.m_width
+ , mip.m_height
+ , mip.m_depth
+ );
+ BX_CHECK(ok, "Conversion from %s to %s failed!"
+ , getName(_input.m_format)
+ , getName(output->m_format)
+ );
+ BX_UNUSED(ok);
+ }
+ }
+ }
+
+ return output;
+ }
+
+ typedef bool (*ParseFn)(ImageContainer&, bx::ReaderSeekerI*, bx::Error*);
+
+ template<uint32_t magicT, ParseFn parseFnT>
+ ImageContainer* imageParseT(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
+ {
+ bx::MemoryReader reader(_src, _size);
+
+ uint32_t magic;
+ bx::read(&reader, magic);
+
+ ImageContainer imageContainer;
+ if (magicT != magic
+ || !parseFnT(imageContainer, &reader, _err) )
+ {
+ return NULL;
+ }
+
+ ImageContainer* output = imageAlloc(_allocator
+ , imageContainer.m_format
+ , uint16_t(imageContainer.m_width)
+ , uint16_t(imageContainer.m_height)
+ , uint16_t(imageContainer.m_depth)
+ , imageContainer.m_numLayers
+ , imageContainer.m_cubeMap
+ , 1 < imageContainer.m_numMips
+ );
+
+ const uint16_t numSides = imageContainer.m_numLayers * (imageContainer.m_cubeMap ? 6 : 1);
+
+ for (uint16_t side = 0; side < numSides; ++side)
+ {
+ for (uint8_t lod = 0, num = imageContainer.m_numMips; lod < num; ++lod)
+ {
+ ImageMip dstMip;
+ if (imageGetRawData(*output, side, lod, output->m_data, output->m_size, dstMip) )
+ {
+ ImageMip mip;
+ if (imageGetRawData(imageContainer, side, lod, _src, _size, mip) )
+ {
+ uint8_t* dstData = const_cast<uint8_t*>(dstMip.m_data);
+ bx::memCopy(dstData, mip.m_data, mip.m_size);
+ }
+ }
+ }
+ }
+
+ return output;
+ }
+
+ uint8_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to)
+ {
+ using namespace bx;
+ uint32_t tmp0 = uint32_sll(1, _to);
+ uint32_t tmp1 = uint32_sll(1, _from);
+ uint32_t tmp2 = uint32_dec(tmp0);
+ uint32_t tmp3 = uint32_dec(tmp1);
+ uint32_t tmp4 = uint32_mul(_in, tmp2);
+ uint32_t tmp5 = uint32_add(tmp3, tmp4);
+ uint32_t tmp6 = uint32_srl(tmp5, _from);
+ uint32_t tmp7 = uint32_add(tmp5, tmp6);
+ uint32_t result = uint32_srl(tmp7, _from);
+
+ return uint8_t(result);
+ }
+
+ void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ uint8_t colors[4*3];
+
+ uint32_t c0 = _src[0] | (_src[1] << 8);
+ colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
+ colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
+ colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
+
+ uint32_t c1 = _src[2] | (_src[3] << 8);
+ colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
+ colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
+ colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
+
+ colors[6] = (2*colors[0] + colors[3]) / 3;
+ colors[7] = (2*colors[1] + colors[4]) / 3;
+ colors[8] = (2*colors[2] + colors[5]) / 3;
+
+ colors[ 9] = (colors[0] + 2*colors[3]) / 3;
+ colors[10] = (colors[1] + 2*colors[4]) / 3;
+ colors[11] = (colors[2] + 2*colors[5]) / 3;
+
+ for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
+ {
+ int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3;
+ _dst[ii+0] = colors[idx+0];
+ _dst[ii+1] = colors[idx+1];
+ _dst[ii+2] = colors[idx+2];
+ }
+ }
+
+ void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ uint8_t colors[4*4];
+
+ uint32_t c0 = _src[0] | (_src[1] << 8);
+ colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8);
+ colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8);
+ colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8);
+ colors[3] = 255;
+
+ uint32_t c1 = _src[2] | (_src[3] << 8);
+ colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8);
+ colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8);
+ colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8);
+ colors[7] = 255;
+
+ if (c0 > c1)
+ {
+ colors[ 8] = (2*colors[0] + colors[4]) / 3;
+ colors[ 9] = (2*colors[1] + colors[5]) / 3;
+ colors[10] = (2*colors[2] + colors[6]) / 3;
+ colors[11] = 255;
+
+ colors[12] = (colors[0] + 2*colors[4]) / 3;
+ colors[13] = (colors[1] + 2*colors[5]) / 3;
+ colors[14] = (colors[2] + 2*colors[6]) / 3;
+ colors[15] = 255;
+ }
+ else
+ {
+ colors[ 8] = (colors[0] + colors[4]) / 2;
+ colors[ 9] = (colors[1] + colors[5]) / 2;
+ colors[10] = (colors[2] + colors[6]) / 2;
+ colors[11] = 255;
+
+ colors[12] = 0;
+ colors[13] = 0;
+ colors[14] = 0;
+ colors[15] = 0;
+ }
+
+ for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2)
+ {
+ int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4;
+ _dst[ii+0] = colors[idx+0];
+ _dst[ii+1] = colors[idx+1];
+ _dst[ii+2] = colors[idx+2];
+ _dst[ii+3] = colors[idx+3];
+ }
+ }
+
+ void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4)
+ {
+ uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf;
+ _dst[ii] = bitRangeConvert(c0, 4, 8);
+ }
+ }
+
+ void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ uint8_t alpha[8];
+ alpha[0] = _src[0];
+ alpha[1] = _src[1];
+
+ if (alpha[0] > alpha[1])
+ {
+ alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7;
+ alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7;
+ alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7;
+ alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7;
+ alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7;
+ alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7;
+ }
+ else
+ {
+ alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5;
+ alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5;
+ alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5;
+ alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5;
+ alpha[6] = 0;
+ alpha[7] = 255;
+ }
+
+ uint32_t idx0 = _src[2];
+ uint32_t idx1 = _src[5];
+ idx0 |= uint32_t(_src[3])<<8;
+ idx1 |= uint32_t(_src[6])<<8;
+ idx0 |= uint32_t(_src[4])<<16;
+ idx1 |= uint32_t(_src[7])<<16;
+ for (uint32_t ii = 0; ii < 8*4; ii += 4)
+ {
+ _dst[ii] = alpha[idx0&7];
+ _dst[ii+32] = alpha[idx1&7];
+ idx0 >>= 3;
+ idx1 >>= 3;
+ }
+ }
+
+ static const int32_t s_etc1Mod[8][4] =
+ {
+ { 2, 8, -2, -8},
+ { 5, 17, -5, -17},
+ { 9, 29, -9, -29},
+ { 13, 42, -13, -42},
+ { 18, 60, -18, -60},
+ { 24, 80, -24, -80},
+ { 33, 106, -33, -106},
+ { 47, 183, -47, -183},
+ };
+
+ static const uint8_t s_etc2Mod[8] = { 3, 6, 11, 16, 23, 32, 41, 64 };
+
+ uint8_t uint8_sat(int32_t _a)
+ {
+ using namespace bx;
+ const uint32_t min = uint32_imin(_a, 255);
+ const uint32_t result = uint32_imax(min, 0);
+ return (uint8_t)result;
+ }
+
+ uint8_t uint8_satadd(int32_t _a, int32_t _b)
+ {
+ const int32_t add = _a + _b;
+ return uint8_sat(add);
+ }
+
+ void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ uint8_t rgb[16];
+
+ // 0 1 2 3 4 5 6 7
+ // 7654321076543210765432107654321076543210765432107654321076543210
+ // ...rr.rrggggbbbbrrrrggggbbbbDDD.mmmmmmmmmmmmmmmmllllllllllllllll
+ // ^ ^ ^ ^ ^
+ // +-- c0 +-- c1 | +-- msb +-- lsb
+ // +-- dist
+
+ rgb[ 0] = ( (_src[0] >> 1) & 0xc)
+ | (_src[0] & 0x3)
+ ;
+ rgb[ 1] = _src[1] >> 4;
+ rgb[ 2] = _src[1] & 0xf;
+
+ rgb[ 8] = _src[2] >> 4;
+ rgb[ 9] = _src[2] & 0xf;
+ rgb[10] = _src[3] >> 4;
+
+ rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
+ rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
+ rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
+ rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
+ rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
+ rgb[10] = bitRangeConvert(rgb[10], 4, 8);
+
+ uint8_t dist = (_src[3] >> 1) & 0x7;
+ int32_t mod = s_etc2Mod[dist];
+
+ rgb[ 4] = uint8_satadd(rgb[ 8], mod);
+ rgb[ 5] = uint8_satadd(rgb[ 9], mod);
+ rgb[ 6] = uint8_satadd(rgb[10], mod);
+
+ rgb[12] = uint8_satadd(rgb[ 8], -mod);
+ rgb[13] = uint8_satadd(rgb[ 9], -mod);
+ rgb[14] = uint8_satadd(rgb[10], -mod);
+
+ uint32_t indexMsb = (_src[4]<<8) | _src[5];
+ uint32_t indexLsb = (_src[6]<<8) | _src[7];
+
+ for (uint32_t ii = 0; ii < 16; ++ii)
+ {
+ const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
+ const uint32_t lsbi = indexLsb & 1;
+ const uint32_t msbi = (indexMsb & 1)<<1;
+ const uint32_t pal = (lsbi | msbi)<<2;
+
+ _dst[idx + 0] = rgb[pal+2];
+ _dst[idx + 1] = rgb[pal+1];
+ _dst[idx + 2] = rgb[pal+0];
+ _dst[idx + 3] = 255;
+
+ indexLsb >>= 1;
+ indexMsb >>= 1;
+ }
+ }
+
+ void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ uint8_t rgb[16];
+
+ // 0 1 2 3 4 5 6 7
+ // 7654321076543210765432107654321076543210765432107654321076543210
+ // .rrrrggg...gb.bbbrrrrggggbbbbDD.mmmmmmmmmmmmmmmmllllllllllllllll
+ // ^ ^ ^ ^ ^
+ // +-- c0 +-- c1 | +-- msb +-- lsb
+ // +-- dist
+
+ rgb[ 0] = (_src[0] >> 3) & 0xf;
+ rgb[ 1] = ( (_src[0] << 1) & 0xe)
+ | ( (_src[1] >> 4) & 0x1)
+ ;
+ rgb[ 2] = (_src[1] & 0x8)
+ | ( (_src[1] << 1) & 0x6)
+ | (_src[2] >> 7)
+ ;
+
+ rgb[ 8] = (_src[2] >> 3) & 0xf;
+ rgb[ 9] = ( (_src[2] << 1) & 0xe)
+ | (_src[3] >> 7)
+ ;
+ rgb[10] = (_src[2] >> 3) & 0xf;
+
+ rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8);
+ rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8);
+ rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8);
+ rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8);
+ rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8);
+ rgb[10] = bitRangeConvert(rgb[10], 4, 8);
+
+ uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]);
+ uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]);
+ uint8_t dist = (_src[3] & 0x6) | (col0 >= col1);
+ int32_t mod = s_etc2Mod[dist];
+
+ rgb[ 4] = uint8_satadd(rgb[ 0], -mod);
+ rgb[ 5] = uint8_satadd(rgb[ 1], -mod);
+ rgb[ 6] = uint8_satadd(rgb[ 2], -mod);
+
+ rgb[ 0] = uint8_satadd(rgb[ 0], mod);
+ rgb[ 1] = uint8_satadd(rgb[ 1], mod);
+ rgb[ 2] = uint8_satadd(rgb[ 2], mod);
+
+ rgb[12] = uint8_satadd(rgb[ 8], -mod);
+ rgb[13] = uint8_satadd(rgb[ 9], -mod);
+ rgb[14] = uint8_satadd(rgb[10], -mod);
+
+ rgb[ 8] = uint8_satadd(rgb[ 8], mod);
+ rgb[ 9] = uint8_satadd(rgb[ 9], mod);
+ rgb[10] = uint8_satadd(rgb[10], mod);
+
+ uint32_t indexMsb = (_src[4]<<8) | _src[5];
+ uint32_t indexLsb = (_src[6]<<8) | _src[7];
+
+ for (uint32_t ii = 0; ii < 16; ++ii)
+ {
+ const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
+ const uint32_t lsbi = indexLsb & 1;
+ const uint32_t msbi = (indexMsb & 1)<<1;
+ const uint32_t pal = (lsbi | msbi)<<2;
+
+ _dst[idx + 0] = rgb[pal+2];
+ _dst[idx + 1] = rgb[pal+1];
+ _dst[idx + 2] = rgb[pal+0];
+ _dst[idx + 3] = 255;
+
+ indexLsb >>= 1;
+ indexMsb >>= 1;
+ }
+ }
+
+ void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ // 0 1 2 3 4 5 6 7
+ // 7654321076543210765432107654321076543210765432107654321076543210
+ // .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb
+ // ^ ^ ^
+ // +-- c0 +-- cH +-- cV
+
+ uint8_t c0[3];
+ uint8_t cH[3];
+ uint8_t cV[3];
+
+ c0[0] = (_src[0] >> 1) & 0x3f;
+ c0[1] = ( (_src[0] & 1) << 6)
+ | ( (_src[1] >> 1) & 0x3f)
+ ;
+ c0[2] = ( (_src[1] & 1) << 5)
+ | ( (_src[2] & 0x18) )
+ | ( (_src[2] << 1) & 6)
+ | ( (_src[3] >> 7) )
+ ;
+
+ cH[0] = ( (_src[3] >> 1) & 0x3e)
+ | (_src[3] & 1)
+ ;
+ cH[1] = _src[4] >> 1;
+ cH[2] = ( (_src[4] & 1) << 5)
+ | (_src[5] >> 3)
+ ;
+
+ cV[0] = ( (_src[5] & 0x7) << 3)
+ | (_src[6] >> 5)
+ ;
+ cV[1] = ( (_src[6] & 0x1f) << 2)
+ | (_src[7] >> 5)
+ ;
+ cV[2] = _src[7] & 0x3f;
+
+ c0[0] = bitRangeConvert(c0[0], 6, 8);
+ c0[1] = bitRangeConvert(c0[1], 7, 8);
+ c0[2] = bitRangeConvert(c0[2], 6, 8);
+
+ cH[0] = bitRangeConvert(cH[0], 6, 8);
+ cH[1] = bitRangeConvert(cH[1], 7, 8);
+ cH[2] = bitRangeConvert(cH[2], 6, 8);
+
+ cV[0] = bitRangeConvert(cV[0], 6, 8);
+ cV[1] = bitRangeConvert(cV[1], 7, 8);
+ cV[2] = bitRangeConvert(cV[2], 6, 8);
+
+ int16_t dy[3];
+ dy[0] = cV[0] - c0[0];
+ dy[1] = cV[1] - c0[1];
+ dy[2] = cV[2] - c0[2];
+
+ int16_t sx[3];
+ sx[0] = int16_t(c0[0])<<2;
+ sx[1] = int16_t(c0[1])<<2;
+ sx[2] = int16_t(c0[2])<<2;
+
+ int16_t ex[3];
+ ex[0] = int16_t(cH[0])<<2;
+ ex[1] = int16_t(cH[1])<<2;
+ ex[2] = int16_t(cH[2])<<2;
+
+ for (int32_t vv = 0; vv < 4; ++vv)
+ {
+ int16_t dx[3];
+ dx[0] = (ex[0] - sx[0])>>2;
+ dx[1] = (ex[1] - sx[1])>>2;
+ dx[2] = (ex[2] - sx[2])>>2;
+
+ for (int32_t hh = 0; hh < 4; ++hh)
+ {
+ const uint32_t idx = (vv<<4) + (hh<<2);
+
+ _dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2);
+ _dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2);
+ _dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2);
+ _dst[idx + 3] = 255;
+ }
+
+ sx[0] += dy[0];
+ sx[1] += dy[1];
+ sx[2] += dy[2];
+
+ ex[0] += dy[0];
+ ex[1] += dy[1];
+ ex[2] += dy[2];
+ }
+ }
+
+ void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8])
+ {
+ bool flipBit = 0 != (_src[3] & 0x1);
+ bool diffBit = 0 != (_src[3] & 0x2);
+
+ uint8_t rgb[8];
+
+ if (diffBit)
+ {
+ rgb[0] = _src[0] >> 3;
+ rgb[1] = _src[1] >> 3;
+ rgb[2] = _src[2] >> 3;
+
+ int8_t diff[3];
+ diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5;
+ diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5;
+ diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5;
+
+ int8_t rr = rgb[0] + diff[0];
+ int8_t gg = rgb[1] + diff[1];
+ int8_t bb = rgb[2] + diff[2];
+
+ // Etc2 3-modes
+ if (rr < 0 || rr > 31)
+ {
+ decodeBlockEtc2ModeT(_dst, _src);
+ return;
+ }
+ if (gg < 0 || gg > 31)
+ {
+ decodeBlockEtc2ModeH(_dst, _src);
+ return;
+ }
+ if (bb < 0 || bb > 31)
+ {
+ decodeBlockEtc2ModePlanar(_dst, _src);
+ return;
+ }
+
+ // Etc1
+ rgb[0] = bitRangeConvert(rgb[0], 5, 8);
+ rgb[1] = bitRangeConvert(rgb[1], 5, 8);
+ rgb[2] = bitRangeConvert(rgb[2], 5, 8);
+ rgb[4] = bitRangeConvert(rr, 5, 8);
+ rgb[5] = bitRangeConvert(gg, 5, 8);
+ rgb[6] = bitRangeConvert(bb, 5, 8);
+ }
+ else
+ {
+ rgb[0] = _src[0] >> 4;
+ rgb[1] = _src[1] >> 4;
+ rgb[2] = _src[2] >> 4;
+
+ rgb[4] = _src[0] & 0xf;
+ rgb[5] = _src[1] & 0xf;
+ rgb[6] = _src[2] & 0xf;
+
+ rgb[0] = bitRangeConvert(rgb[0], 4, 8);
+ rgb[1] = bitRangeConvert(rgb[1], 4, 8);
+ rgb[2] = bitRangeConvert(rgb[2], 4, 8);
+ rgb[4] = bitRangeConvert(rgb[4], 4, 8);
+ rgb[5] = bitRangeConvert(rgb[5], 4, 8);
+ rgb[6] = bitRangeConvert(rgb[6], 4, 8);
+ }
+
+ uint32_t table[2];
+ table[0] = (_src[3] >> 5) & 0x7;
+ table[1] = (_src[3] >> 2) & 0x7;
+
+ uint32_t indexMsb = (_src[4]<<8) | _src[5];
+ uint32_t indexLsb = (_src[6]<<8) | _src[7];
+
+ if (flipBit)
+ {
+ for (uint32_t ii = 0; ii < 16; ++ii)
+ {
+ const uint32_t block = (ii>>1)&1;
+ const uint32_t color = block<<2;
+ const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
+ const uint32_t lsbi = indexLsb & 1;
+ const uint32_t msbi = (indexMsb & 1)<<1;
+ const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
+
+ _dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
+ _dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
+ _dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
+ _dst[idx + 3] = 255;
+
+ indexLsb >>= 1;
+ indexMsb >>= 1;
+ }
+ }
+ else
+ {
+ for (uint32_t ii = 0; ii < 16; ++ii)
+ {
+ const uint32_t block = ii>>3;
+ const uint32_t color = block<<2;
+ const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4);
+ const uint32_t lsbi = indexLsb & 1;
+ const uint32_t msbi = (indexMsb & 1)<<1;
+ const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi];
+
+ _dst[idx + 0] = uint8_satadd(rgb[color+2], mod);
+ _dst[idx + 1] = uint8_satadd(rgb[color+1], mod);
+ _dst[idx + 2] = uint8_satadd(rgb[color+0], mod);
+ _dst[idx + 3] = 255;
+
+ indexLsb >>= 1;
+ indexMsb >>= 1;
+ }
+ }
+ }
+
+ static const uint8_t s_pvrtcFactors[16][4] =
+ {
+ { 4, 4, 4, 4 },
+ { 2, 6, 2, 6 },
+ { 8, 0, 8, 0 },
+ { 6, 2, 6, 2 },
+
+ { 2, 2, 6, 6 },
+ { 1, 3, 3, 9 },
+ { 4, 0, 12, 0 },
+ { 3, 1, 9, 3 },
+
+ { 8, 8, 0, 0 },
+ { 4, 12, 0, 0 },
+ { 16, 0, 0, 0 },
+ { 12, 4, 0, 0 },
+
+ { 6, 6, 2, 2 },
+ { 3, 9, 1, 3 },
+ { 12, 0, 4, 0 },
+ { 9, 3, 3, 1 },
+ };
+
+ static const uint8_t s_pvrtcWeights[8][4] =
+ {
+ { 8, 0, 8, 0 },
+ { 5, 3, 5, 3 },
+ { 3, 5, 3, 5 },
+ { 0, 8, 0, 8 },
+
+ { 8, 0, 8, 0 },
+ { 4, 4, 4, 4 },
+ { 4, 4, 4, 4 },
+ { 0, 8, 0, 8 },
+ };
+
+ uint32_t morton2d(uint32_t _x, uint32_t _y)
+ {
+ using namespace bx;
+ const uint32_t tmpx = uint32_part1by1(_x);
+ const uint32_t xbits = uint32_sll(tmpx, 1);
+ const uint32_t ybits = uint32_part1by1(_y);
+ const uint32_t result = uint32_or(xbits, ybits);
+ return result;
+ }
+
+ uint32_t getColor(const uint8_t _src[8])
+ {
+ return 0
+ | _src[7]<<24
+ | _src[6]<<16
+ | _src[5]<<8
+ | _src[4]
+ ;
+ }
+
+ void decodeBlockPtc14RgbAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
+ {
+ if (0 != (_block & (1<<15) ) )
+ {
+ *_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
+ }
+ else
+ {
+ *_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
+ }
+ }
+
+ void decodeBlockPtc14RgbAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor)
+ {
+ if (0 != (_block & (1<<31) ) )
+ {
+ *_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
+ }
+ else
+ {
+ *_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
+ }
+ }
+
+ void decodeBlockPtc14(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
+ {
+ // 0 1 2 3 4 5 6 7
+ // 7654321076543210765432107654321076543210765432107654321076543210
+ // mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
+ // ^ ^^ ^^ ^
+ // +-- modulation data |+- B color |+- A color |
+ // +-- B opaque +-- A opaque |
+ // alpha punchthrough --+
+
+ const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
+
+ uint32_t mod = 0
+ | bc[3]<<24
+ | bc[2]<<16
+ | bc[1]<<8
+ | bc[0]
+ ;
+
+ const bool punchthrough = !!(bc[7] & 1);
+ const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
+ const uint8_t* factorTable = s_pvrtcFactors[0];
+
+ for (int yy = 0; yy < 4; ++yy)
+ {
+ const uint32_t yOffset = (yy < 2) ? -1 : 0;
+ const uint32_t y0 = (_y + yOffset) % _height;
+ const uint32_t y1 = (y0 + 1) % _height;
+
+ for (int xx = 0; xx < 4; ++xx)
+ {
+ const uint32_t xOffset = (xx < 2) ? -1 : 0;
+ const uint32_t x0 = (_x + xOffset) % _width;
+ const uint32_t x1 = (x0 + 1) % _width;
+
+ const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
+ const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
+ const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
+ const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
+
+ const uint8_t f0 = factorTable[0];
+ const uint8_t f1 = factorTable[1];
+ const uint8_t f2 = factorTable[2];
+ const uint8_t f3 = factorTable[3];
+
+ uint32_t ar = 0, ag = 0, ab = 0;
+ decodeBlockPtc14RgbAddA(bc0, &ar, &ag, &ab, f0);
+ decodeBlockPtc14RgbAddA(bc1, &ar, &ag, &ab, f1);
+ decodeBlockPtc14RgbAddA(bc2, &ar, &ag, &ab, f2);
+ decodeBlockPtc14RgbAddA(bc3, &ar, &ag, &ab, f3);
+
+ uint32_t br = 0, bg = 0, bb = 0;
+ decodeBlockPtc14RgbAddB(bc0, &br, &bg, &bb, f0);
+ decodeBlockPtc14RgbAddB(bc1, &br, &bg, &bb, f1);
+ decodeBlockPtc14RgbAddB(bc2, &br, &bg, &bb, f2);
+ decodeBlockPtc14RgbAddB(bc3, &br, &bg, &bb, f3);
+
+ const uint8_t* weight = &weightTable[(mod & 3)*4];
+ const uint8_t wa = weight[0];
+ const uint8_t wb = weight[1];
+
+ _dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
+ _dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
+ _dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
+ _dst[(yy*4 + xx)*4+3] = 255;
+
+ mod >>= 2;
+ factorTable += 4;
+ }
+ }
+ }
+
+ void decodeBlockPtc14ARgbaAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
+ {
+ if (0 != (_block & (1<<15) ) )
+ {
+ *_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor;
+ *_a += 255 * _factor;
+ }
+ else
+ {
+ *_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor;
+ *_a += bitRangeConvert( (_block >> 12) & 0x7, 3, 8) * _factor;
+ }
+ }
+
+ void decodeBlockPtc14ARgbaAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor)
+ {
+ if (0 != (_block & (1<<31) ) )
+ {
+ *_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor;
+ *_a += 255 * _factor;
+ }
+ else
+ {
+ *_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor;
+ *_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor;
+ *_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor;
+ *_a += bitRangeConvert( (_block >> 28) & 0x7, 3, 8) * _factor;
+ }
+ }
+
+ void decodeBlockPtc14A(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height)
+ {
+ // 0 1 2 3 4 5 6 7
+ // 7654321076543210765432107654321076543210765432107654321076543210
+ // mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp
+ // ^ ^^ ^^ ^
+ // +-- modulation data |+- B color |+- A color |
+ // +-- B opaque +-- A opaque |
+ // alpha punchthrough --+
+
+ const uint8_t* bc = &_src[morton2d(_x, _y) * 8];
+
+ uint32_t mod = 0
+ | bc[3]<<24
+ | bc[2]<<16
+ | bc[1]<<8
+ | bc[0]
+ ;
+
+ const bool punchthrough = !!(bc[7] & 1);
+ const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough];
+ const uint8_t* factorTable = s_pvrtcFactors[0];
+
+ for (int yy = 0; yy < 4; ++yy)
+ {
+ const uint32_t yOffset = (yy < 2) ? -1 : 0;
+ const uint32_t y0 = (_y + yOffset) % _height;
+ const uint32_t y1 = (y0 + 1) % _height;
+
+ for (int xx = 0; xx < 4; ++xx)
+ {
+ const uint32_t xOffset = (xx < 2) ? -1 : 0;
+ const uint32_t x0 = (_x + xOffset) % _width;
+ const uint32_t x1 = (x0 + 1) % _width;
+
+ const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]);
+ const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]);
+ const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]);
+ const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]);
+
+ const uint8_t f0 = factorTable[0];
+ const uint8_t f1 = factorTable[1];
+ const uint8_t f2 = factorTable[2];
+ const uint8_t f3 = factorTable[3];
+
+ uint32_t ar = 0, ag = 0, ab = 0, aa = 0;
+ decodeBlockPtc14ARgbaAddA(bc0, &ar, &ag, &ab, &aa, f0);
+ decodeBlockPtc14ARgbaAddA(bc1, &ar, &ag, &ab, &aa, f1);
+ decodeBlockPtc14ARgbaAddA(bc2, &ar, &ag, &ab, &aa, f2);
+ decodeBlockPtc14ARgbaAddA(bc3, &ar, &ag, &ab, &aa, f3);
+
+ uint32_t br = 0, bg = 0, bb = 0, ba = 0;
+ decodeBlockPtc14ARgbaAddB(bc0, &br, &bg, &bb, &ba, f0);
+ decodeBlockPtc14ARgbaAddB(bc1, &br, &bg, &bb, &ba, f1);
+ decodeBlockPtc14ARgbaAddB(bc2, &br, &bg, &bb, &ba, f2);
+ decodeBlockPtc14ARgbaAddB(bc3, &br, &bg, &bb, &ba, f3);
+
+ const uint8_t* weight = &weightTable[(mod & 3)*4];
+ const uint8_t wa = weight[0];
+ const uint8_t wb = weight[1];
+ const uint8_t wc = weight[2];
+ const uint8_t wd = weight[3];
+
+ _dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7);
+ _dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7);
+ _dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7);
+ _dst[(yy*4 + xx)*4+3] = uint8_t( (aa * wc + ba * wd) >> 7);
+
+ mod >>= 2;
+ factorTable += 4;
+ }
+ }
+ }
+
+ ImageContainer* imageAlloc(bx::AllocatorI* _allocator, TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, bool _hasMips, const void* _data)
+ {
+ const ImageBlockInfo& blockInfo = getBlockInfo(_format);
+ const uint16_t blockWidth = blockInfo.blockWidth;
+ const uint16_t blockHeight = blockInfo.blockHeight;
+ const uint16_t minBlockX = blockInfo.minBlockX;
+ const uint16_t minBlockY = blockInfo.minBlockY;
+
+ _width = bx::uint16_max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth);
+ _height = bx::uint16_max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight);
+ _depth = bx::uint16_max(1, _depth);
+ _numLayers = bx::uint16_max(1, _numLayers);
+
+ const uint8_t numMips = _hasMips ? imageGetNumMips(_format, _width, _height, _depth) : 1;
+ uint32_t size = imageGetSize(NULL, _width, _height, _depth, _cubeMap, _hasMips, _numLayers, _format);
+
+ ImageContainer* imageContainer = (ImageContainer*)BX_ALLOC(_allocator, size + sizeof(ImageContainer) );
+
+ imageContainer->m_allocator = _allocator;
+ imageContainer->m_data = imageContainer + 1;
+ imageContainer->m_format = _format;
+ imageContainer->m_orientation = Orientation::R0;
+ imageContainer->m_size = size;
+ imageContainer->m_offset = 0;
+ imageContainer->m_width = _width;
+ imageContainer->m_height = _height;
+ imageContainer->m_depth = _depth;
+ imageContainer->m_numLayers = _numLayers;
+ imageContainer->m_numMips = numMips;
+ imageContainer->m_hasAlpha = false;
+ imageContainer->m_cubeMap = _cubeMap;
+ imageContainer->m_ktx = false;
+ imageContainer->m_ktxLE = false;
+ imageContainer->m_srgb = false;
+
+ if (NULL != _data)
+ {
+ bx::memCopy(imageContainer->m_data, _data, imageContainer->m_size);
+ }
+
+ return imageContainer;
+ }
+
+ void imageFree(ImageContainer* _imageContainer)
+ {
+ BX_FREE(_imageContainer->m_allocator, _imageContainer);
+ }
+
+// DDS
+#define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ')
+#define DDS_HEADER_SIZE 124
+
+#define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1')
+#define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2')
+#define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3')
+#define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4')
+#define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5')
+#define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1')
+#define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U')
+#define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2')
+#define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U')
+#define DDS_DX10 BX_MAKEFOURCC('D', 'X', '1', '0')
+
+#define DDS_A8R8G8B8 21
+#define DDS_R5G6B5 23
+#define DDS_A1R5G5B5 25
+#define DDS_A4R4G4B4 26
+#define DDS_A2B10G10R10 31
+#define DDS_G16R16 34
+#define DDS_A2R10G10B10 35
+#define DDS_A16B16G16R16 36
+#define DDS_A8L8 51
+#define DDS_R16F 111
+#define DDS_G16R16F 112
+#define DDS_A16B16G16R16F 113
+#define DDS_R32F 114
+#define DDS_G32R32F 115
+#define DDS_A32B32G32R32F 116
+
+#define DDS_FORMAT_R32G32B32A32_FLOAT 2
+#define DDS_FORMAT_R32G32B32A32_UINT 3
+#define DDS_FORMAT_R16G16B16A16_FLOAT 10
+#define DDS_FORMAT_R16G16B16A16_UNORM 11
+#define DDS_FORMAT_R16G16B16A16_UINT 12
+#define DDS_FORMAT_R32G32_FLOAT 16
+#define DDS_FORMAT_R32G32_UINT 17
+#define DDS_FORMAT_R10G10B10A2_UNORM 24
+#define DDS_FORMAT_R11G11B10_FLOAT 26
+#define DDS_FORMAT_R8G8B8A8_UNORM 28
+#define DDS_FORMAT_R8G8B8A8_UNORM_SRGB 29
+#define DDS_FORMAT_R16G16_FLOAT 34
+#define DDS_FORMAT_R16G16_UNORM 35
+#define DDS_FORMAT_R32_FLOAT 41
+#define DDS_FORMAT_R32_UINT 42
+#define DDS_FORMAT_R8G8_UNORM 49
+#define DDS_FORMAT_R16_FLOAT 54
+#define DDS_FORMAT_R16_UNORM 56
+#define DDS_FORMAT_R8_UNORM 61
+#define DDS_FORMAT_R1_UNORM 66
+#define DDS_FORMAT_BC1_UNORM 71
+#define DDS_FORMAT_BC1_UNORM_SRGB 72
+#define DDS_FORMAT_BC2_UNORM 74
+#define DDS_FORMAT_BC2_UNORM_SRGB 75
+#define DDS_FORMAT_BC3_UNORM 77
+#define DDS_FORMAT_BC3_UNORM_SRGB 78
+#define DDS_FORMAT_BC4_UNORM 80
+#define DDS_FORMAT_BC5_UNORM 83
+#define DDS_FORMAT_B5G6R5_UNORM 85
+#define DDS_FORMAT_B5G5R5A1_UNORM 86
+#define DDS_FORMAT_B8G8R8A8_UNORM 87
+#define DDS_FORMAT_B8G8R8A8_UNORM_SRGB 91
+#define DDS_FORMAT_BC6H_SF16 96
+#define DDS_FORMAT_BC7_UNORM 98
+#define DDS_FORMAT_BC7_UNORM_SRGB 99
+#define DDS_FORMAT_B4G4R4A4_UNORM 115
+
+#define DDS_DX10_DIMENSION_TEXTURE2D 3
+#define DDS_DX10_DIMENSION_TEXTURE3D 4
+#define DDS_DX10_MISC_TEXTURECUBE 4
+
+#define DDSD_CAPS 0x00000001
+#define DDSD_HEIGHT 0x00000002
+#define DDSD_WIDTH 0x00000004
+#define DDSD_PITCH 0x00000008
+#define DDSD_PIXELFORMAT 0x00001000
+#define DDSD_MIPMAPCOUNT 0x00020000
+#define DDSD_LINEARSIZE 0x00080000
+#define DDSD_DEPTH 0x00800000
+
+#define DDPF_ALPHAPIXELS 0x00000001
+#define DDPF_ALPHA 0x00000002
+#define DDPF_FOURCC 0x00000004
+#define DDPF_INDEXED 0x00000020
+#define DDPF_RGB 0x00000040
+#define DDPF_YUV 0x00000200
+#define DDPF_LUMINANCE 0x00020000
+#define DDPF_BUMPDUDV 0x00080000
+
+#define DDSCAPS_COMPLEX 0x00000008
+#define DDSCAPS_TEXTURE 0x00001000
+#define DDSCAPS_MIPMAP 0x00400000
+
+#define DDSCAPS2_VOLUME 0x00200000
+#define DDSCAPS2_CUBEMAP 0x00000200
+#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
+#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
+#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
+#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
+#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
+#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
+
+#define DSCAPS2_CUBEMAP_ALLSIDES (0 \
+ | DDSCAPS2_CUBEMAP_POSITIVEX \
+ | DDSCAPS2_CUBEMAP_NEGATIVEX \
+ | DDSCAPS2_CUBEMAP_POSITIVEY \
+ | DDSCAPS2_CUBEMAP_NEGATIVEY \
+ | DDSCAPS2_CUBEMAP_POSITIVEZ \
+ | DDSCAPS2_CUBEMAP_NEGATIVEZ \
+ )
+
+ struct TranslateDdsFormat
+ {
+ uint32_t m_format;
+ TextureFormat::Enum m_textureFormat;
+ bool m_srgb;
+ };
+
+ static const TranslateDdsFormat s_translateDdsFourccFormat[] =
+ {
+ { DDS_DXT1, TextureFormat::BC1, false },
+ { DDS_DXT2, TextureFormat::BC2, false },
+ { DDS_DXT3, TextureFormat::BC2, false },
+ { DDS_DXT4, TextureFormat::BC3, false },
+ { DDS_DXT5, TextureFormat::BC3, false },
+ { DDS_ATI1, TextureFormat::BC4, false },
+ { DDS_BC4U, TextureFormat::BC4, false },
+ { DDS_ATI2, TextureFormat::BC5, false },
+ { DDS_BC5U, TextureFormat::BC5, false },
+ { DDS_A16B16G16R16, TextureFormat::RGBA16, false },
+ { DDS_A16B16G16R16F, TextureFormat::RGBA16F, false },
+ { DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8, false },
+ { DDPF_INDEXED, TextureFormat::R8, false },
+ { DDPF_LUMINANCE, TextureFormat::R8, false },
+ { DDPF_ALPHA, TextureFormat::R8, false },
+ { DDS_R16F, TextureFormat::R16F, false },
+ { DDS_R32F, TextureFormat::R32F, false },
+ { DDS_A8L8, TextureFormat::RG8, false },
+ { DDS_G16R16, TextureFormat::RG16, false },
+ { DDS_G16R16F, TextureFormat::RG16F, false },
+ { DDS_G32R32F, TextureFormat::RG32F, false },
+ { DDS_A8R8G8B8, TextureFormat::BGRA8, false },
+ { DDS_A16B16G16R16, TextureFormat::RGBA16, false },
+ { DDS_A16B16G16R16F, TextureFormat::RGBA16F, false },
+ { DDS_A32B32G32R32F, TextureFormat::RGBA32F, false },
+ { DDS_R5G6B5, TextureFormat::R5G6B5, false },
+ { DDS_A4R4G4B4, TextureFormat::RGBA4, false },
+ { DDS_A1R5G5B5, TextureFormat::RGB5A1, false },
+ { DDS_A2B10G10R10, TextureFormat::RGB10A2, false },
+ };
+
+ static const TranslateDdsFormat s_translateDxgiFormat[] =
+ {
+ { DDS_FORMAT_BC1_UNORM, TextureFormat::BC1, false },
+ { DDS_FORMAT_BC1_UNORM_SRGB, TextureFormat::BC1, true },
+ { DDS_FORMAT_BC2_UNORM, TextureFormat::BC2, false },
+ { DDS_FORMAT_BC2_UNORM_SRGB, TextureFormat::BC2, true },
+ { DDS_FORMAT_BC3_UNORM, TextureFormat::BC3, false },
+ { DDS_FORMAT_BC3_UNORM_SRGB, TextureFormat::BC3, true },
+ { DDS_FORMAT_BC4_UNORM, TextureFormat::BC4, false },
+ { DDS_FORMAT_BC5_UNORM, TextureFormat::BC5, false },
+ { DDS_FORMAT_BC6H_SF16, TextureFormat::BC6H, false },
+ { DDS_FORMAT_BC7_UNORM, TextureFormat::BC7, false },
+ { DDS_FORMAT_BC7_UNORM_SRGB, TextureFormat::BC7, true },
+
+ { DDS_FORMAT_R1_UNORM, TextureFormat::R1, false },
+ { DDS_FORMAT_R8_UNORM, TextureFormat::R8, false },
+ { DDS_FORMAT_R16_UNORM, TextureFormat::R16, false },
+ { DDS_FORMAT_R16_FLOAT, TextureFormat::R16F, false },
+ { DDS_FORMAT_R32_UINT, TextureFormat::R32U, false },
+ { DDS_FORMAT_R32_FLOAT, TextureFormat::R32F, false },
+ { DDS_FORMAT_R8G8_UNORM, TextureFormat::RG8, false },
+ { DDS_FORMAT_R16G16_UNORM, TextureFormat::RG16, false },
+ { DDS_FORMAT_R16G16_FLOAT, TextureFormat::RG16F, false },
+ { DDS_FORMAT_R32G32_UINT, TextureFormat::RG32U, false },
+ { DDS_FORMAT_R32G32_FLOAT, TextureFormat::RG32F, false },
+ { DDS_FORMAT_B8G8R8A8_UNORM, TextureFormat::BGRA8, false },
+ { DDS_FORMAT_B8G8R8A8_UNORM_SRGB, TextureFormat::BGRA8, true },
+ { DDS_FORMAT_R8G8B8A8_UNORM, TextureFormat::RGBA8, false },
+ { DDS_FORMAT_R8G8B8A8_UNORM_SRGB, TextureFormat::RGBA8, true },
+ { DDS_FORMAT_R16G16B16A16_UNORM, TextureFormat::RGBA16, false },
+ { DDS_FORMAT_R16G16B16A16_FLOAT, TextureFormat::RGBA16F, false },
+ { DDS_FORMAT_R32G32B32A32_UINT, TextureFormat::RGBA32U, false },
+ { DDS_FORMAT_R32G32B32A32_FLOAT, TextureFormat::RGBA32F, false },
+ { DDS_FORMAT_B5G6R5_UNORM, TextureFormat::R5G6B5, false },
+ { DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::RGBA4, false },
+ { DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::RGB5A1, false },
+ { DDS_FORMAT_R10G10B10A2_UNORM, TextureFormat::RGB10A2, false },
+ { DDS_FORMAT_R11G11B10_FLOAT, TextureFormat::RG11B10F, false },
+ };
+
+ struct TranslateDdsPixelFormat
+ {
+ uint32_t m_bitCount;
+ uint32_t m_flags;
+ uint32_t m_bitmask[4];
+ TextureFormat::Enum m_textureFormat;
+ };
+
+ static const TranslateDdsPixelFormat s_translateDdsPixelFormat[] =
+ {
+ { 8, DDPF_LUMINANCE, { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R8 },
+ { 16, DDPF_BUMPDUDV, { 0x000000ff, 0x0000ff00, 0x00000000, 0x00000000 }, TextureFormat::RG8S },
+ { 16, DDPF_RGB, { 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R16U },
+ { 16, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, TextureFormat::RGBA4 },
+ { 16, DDPF_RGB, { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, TextureFormat::R5G6B5 },
+ { 16, DDPF_RGB, { 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, TextureFormat::RGB5A1 },
+ { 24, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::RGB8 },
+ { 32, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 },
+ { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, TextureFormat::RGBA8 },
+ { 32, DDPF_BUMPDUDV, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, TextureFormat::RGBA8S },
+ { 32, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 },
+ { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 }, // D3DFMT_A8R8G8B8
+ { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 }, // D3DFMT_X8R8G8B8
+ { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, TextureFormat::RGB10A2 },
+ { 32, DDPF_RGB, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16 },
+ { 32, DDPF_BUMPDUDV, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16S },
+ { 32, DDPF_RGB, { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R32U },
+ };
+
+ bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+ int32_t total = 0;
+
+ uint32_t headerSize;
+ total += bx::read(_reader, headerSize, _err);
+
+ if (!_err->isOk()
+ || headerSize < DDS_HEADER_SIZE)
+ {
+ return false;
+ }
+
+ uint32_t flags;
+ total += bx::read(_reader, flags, _err);
+
+ if (!_err->isOk() )
+ {
+ return false;
+ }
+
+ if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) )
+ {
+ BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Invalid flags.");
+ return false;
+ }
+
+ uint32_t height;
+ total += bx::read(_reader, height, _err);
+
+ uint32_t width;
+ total += bx::read(_reader, width, _err);
+
+ uint32_t pitch;
+ total += bx::read(_reader, pitch, _err);
+
+ uint32_t depth;
+ total += bx::read(_reader, depth, _err);
+
+ uint32_t mips;
+ total += bx::read(_reader, mips, _err);
+
+ bx::skip(_reader, 44); // reserved
+ total += 44;
+
+ uint32_t pixelFormatSize;
+ total += bx::read(_reader, pixelFormatSize, _err);
+
+ uint32_t pixelFlags;
+ total += bx::read(_reader, pixelFlags, _err);
+
+ uint32_t fourcc;
+ total += bx::read(_reader, fourcc, _err);
+
+ uint32_t bitCount;
+ total += bx::read(_reader, bitCount, _err);
+
+ uint32_t bitmask[4];
+ total += bx::read(_reader, bitmask, sizeof(bitmask), _err);
+
+ uint32_t caps[4];
+ total += bx::read(_reader, caps, _err);
+
+ bx::skip(_reader, 4);
+ total += 4; // reserved
+
+ if (!_err->isOk() )
+ {
+ return false;
+ }
+
+ uint32_t dxgiFormat = 0;
+ uint32_t arraySize = 1;
+ if (DDPF_FOURCC == pixelFlags
+ && DDS_DX10 == fourcc)
+ {
+ total += bx::read(_reader, dxgiFormat, _err);
+
+ uint32_t dims;
+ total += bx::read(_reader, dims, _err);
+
+ uint32_t miscFlags;
+ total += bx::read(_reader, miscFlags, _err);
+
+ total += bx::read(_reader, arraySize, _err);
+
+ uint32_t miscFlags2;
+ total += bx::read(_reader, miscFlags2, _err);
+ }
+
+ if (!_err->isOk() )
+ {
+ return false;
+ }
+
+ if ( (caps[0] & DDSCAPS_TEXTURE) == 0)
+ {
+ BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Unsupported caps.");
+ return false;
+ }
+
+ bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP);
+ if (cubeMap)
+ {
+ if ( (caps[1] & DSCAPS2_CUBEMAP_ALLSIDES) != DSCAPS2_CUBEMAP_ALLSIDES)
+ {
+ // partial cube map is not supported.
+ BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Incomplete cubemap.");
+ return false;
+ }
+ }
+
+ TextureFormat::Enum format = TextureFormat::Unknown;
+ bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS;
+ bool srgb = false;
+
+ if (dxgiFormat == 0)
+ {
+ if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) )
+ {
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii)
+ {
+ if (s_translateDdsFourccFormat[ii].m_format == fourcc)
+ {
+ format = s_translateDdsFourccFormat[ii].m_textureFormat;
+ break;
+ }
+ }
+ }
+ else
+ {
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii)
+ {
+ const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ii];
+ if (pf.m_bitCount == bitCount
+ && pf.m_flags == pixelFlags
+ && pf.m_bitmask[0] == bitmask[0]
+ && pf.m_bitmask[1] == bitmask[1]
+ && pf.m_bitmask[2] == bitmask[2]
+ && pf.m_bitmask[3] == bitmask[3])
+ {
+ format = pf.m_textureFormat;
+ break;
+ }
+ }
+ }
+ }
+ else
+ {
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii)
+ {
+ if (s_translateDxgiFormat[ii].m_format == dxgiFormat)
+ {
+ format = s_translateDxgiFormat[ii].m_textureFormat;
+ srgb = s_translateDxgiFormat[ii].m_srgb;
+ break;
+ }
+ }
+ }
+
+ if (TextureFormat::Unknown == format)
+ {
+ BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Unknown texture format.");
+ return false;
+ }
+
+ _imageContainer.m_allocator = NULL;
+ _imageContainer.m_data = NULL;
+ _imageContainer.m_size = 0;
+ _imageContainer.m_offset = (uint32_t)bx::seek(_reader);
+ _imageContainer.m_width = width;
+ _imageContainer.m_height = height;
+ _imageContainer.m_depth = depth;
+ _imageContainer.m_format = format;
+ _imageContainer.m_orientation = Orientation::R0;
+ _imageContainer.m_numLayers = uint16_t(arraySize);
+ _imageContainer.m_numMips = uint8_t( (caps[0] & DDSCAPS_MIPMAP) ? mips : 1);
+ _imageContainer.m_hasAlpha = hasAlpha;
+ _imageContainer.m_cubeMap = cubeMap;
+ _imageContainer.m_ktx = false;
+ _imageContainer.m_ktxLE = false;
+ _imageContainer.m_srgb = srgb;
+
+ return true;
+ }
+
+ ImageContainer* imageParseDds(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
+ {
+ return imageParseT<DDS_MAGIC, imageParseDds>(_allocator, _src, _size, _err);
+ }
+
+// KTX
+#define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X')
+#define KTX_HEADER_SIZE 64
+
+#define KTX_ETC1_RGB8_OES 0x8D64
+#define KTX_COMPRESSED_R11_EAC 0x9270
+#define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271
+#define KTX_COMPRESSED_RG11_EAC 0x9272
+#define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273
+#define KTX_COMPRESSED_RGB8_ETC2 0x9274
+#define KTX_COMPRESSED_SRGB8_ETC2 0x9275
+#define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276
+#define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277
+#define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278
+#define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279
+#define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
+#define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
+#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
+#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
+#define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137
+#define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138
+#define KTX_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
+#define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
+#define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
+#define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
+#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D
+#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E
+#define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F
+#define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70
+#define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72
+#define KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C
+#define KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D
+#define KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E
+#define KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F
+#define KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
+#define KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
+#define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
+#define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
+
+#define KTX_A8 0x803C
+#define KTX_R8 0x8229
+#define KTX_R16 0x822A
+#define KTX_RG8 0x822B
+#define KTX_RG16 0x822C
+#define KTX_R16F 0x822D
+#define KTX_R32F 0x822E
+#define KTX_RG16F 0x822F
+#define KTX_RG32F 0x8230
+#define KTX_RGBA8 0x8058
+#define KTX_RGBA16 0x805B
+#define KTX_RGBA16F 0x881A
+#define KTX_R32UI 0x8236
+#define KTX_RG32UI 0x823C
+#define KTX_RGBA32UI 0x8D70
+#define KTX_RGBA32F 0x8814
+#define KTX_RGB565 0x8D62
+#define KTX_RGBA4 0x8056
+#define KTX_RGB5_A1 0x8057
+#define KTX_RGB10_A2 0x8059
+#define KTX_R8I 0x8231
+#define KTX_R8UI 0x8232
+#define KTX_R16I 0x8233
+#define KTX_R16UI 0x8234
+#define KTX_R32I 0x8235
+#define KTX_R32UI 0x8236
+#define KTX_RG8I 0x8237
+#define KTX_RG8UI 0x8238
+#define KTX_RG16I 0x8239
+#define KTX_RG16UI 0x823A
+#define KTX_RG32I 0x823B
+#define KTX_RG32UI 0x823C
+#define KTX_R8_SNORM 0x8F94
+#define KTX_RG8_SNORM 0x8F95
+#define KTX_RGB8_SNORM 0x8F96
+#define KTX_RGBA8_SNORM 0x8F97
+#define KTX_R16_SNORM 0x8F98
+#define KTX_RG16_SNORM 0x8F99
+#define KTX_RGB16_SNORM 0x8F9A
+#define KTX_RGBA16_SNORM 0x8F9B
+#define KTX_SRGB8 0x8C41
+#define KTX_SRGB8_ALPHA8 0x8C43
+#define KTX_RGBA32UI 0x8D70
+#define KTX_RGB32UI 0x8D71
+#define KTX_RGBA16UI 0x8D76
+#define KTX_RGB16UI 0x8D77
+#define KTX_RGBA8UI 0x8D7C
+#define KTX_RGB8UI 0x8D7D
+#define KTX_RGBA32I 0x8D82
+#define KTX_RGB32I 0x8D83
+#define KTX_RGBA16I 0x8D88
+#define KTX_RGB16I 0x8D89
+#define KTX_RGBA8I 0x8D8E
+#define KTX_RGB8 0x8051
+#define KTX_RGB8I 0x8D8F
+#define KTX_RGB9_E5 0x8C3D
+#define KTX_R11F_G11F_B10F 0x8C3A
+
+#define KTX_ZERO 0
+#define KTX_RED 0x1903
+#define KTX_ALPHA 0x1906
+#define KTX_RGB 0x1907
+#define KTX_RGBA 0x1908
+#define KTX_BGRA 0x80E1
+#define KTX_RG 0x8227
+
+#define KTX_BYTE 0x1400
+#define KTX_UNSIGNED_BYTE 0x1401
+#define KTX_SHORT 0x1402
+#define KTX_UNSIGNED_SHORT 0x1403
+#define KTX_INT 0x1404
+#define KTX_UNSIGNED_INT 0x1405
+#define KTX_FLOAT 0x1406
+#define KTX_HALF_FLOAT 0x140B
+#define KTX_UNSIGNED_INT_5_9_9_9_REV 0x8C3E
+#define KTX_UNSIGNED_SHORT_5_6_5 0x8363
+#define KTX_UNSIGNED_SHORT_4_4_4_4 0x8033
+#define KTX_UNSIGNED_SHORT_5_5_5_1 0x8034
+#define KTX_UNSIGNED_INT_2_10_10_10_REV 0x8368
+#define KTX_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B
+
+ struct KtxFormatInfo
+ {
+ uint32_t m_internalFmt;
+ uint32_t m_internalFmtSrgb;
+ uint32_t m_fmt;
+ uint32_t m_type;
+ };
+
+ static const KtxFormatInfo s_translateKtxFormat[] =
+ {
+ { KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_ZERO, }, // BC1
+ { KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_ZERO, }, // BC2
+ { KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_ZERO, }, // BC3
+ { KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, }, // BC4
+ { KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, }, // BC5
+ { KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, }, // BC6H
+ { KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, }, // BC7
+ { KTX_ETC1_RGB8_OES, KTX_ZERO, KTX_ETC1_RGB8_OES, KTX_ZERO, }, // ETC1
+ { KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, }, // ETC2
+ { KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_COMPRESSED_SRGB8_ETC2, KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_ZERO, }, // ETC2A
+ { KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_ZERO, }, // ETC2A1
+ { KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12
+ { KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14
+ { KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12A
+ { KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14A
+ { KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, }, // PTC22
+ { KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, }, // PTC24
+ { KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // Unknown
+ { KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // R1
+ { KTX_ALPHA, KTX_ZERO, KTX_ALPHA, KTX_UNSIGNED_BYTE, }, // A8
+ { KTX_R8, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8
+ { KTX_R8I, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S
+ { KTX_R8UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8S
+ { KTX_R8_SNORM, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S
+ { KTX_R16, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16
+ { KTX_R16I, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16I
+ { KTX_R16UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16U
+ { KTX_R16F, KTX_ZERO, KTX_RED, KTX_HALF_FLOAT, }, // R16F
+ { KTX_R16_SNORM, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16S
+ { KTX_R32I, KTX_ZERO, KTX_RED, KTX_INT, }, // R32I
+ { KTX_R32UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_INT, }, // R32U
+ { KTX_R32F, KTX_ZERO, KTX_RED, KTX_FLOAT, }, // R32F
+ { KTX_RG8, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8
+ { KTX_RG8I, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8I
+ { KTX_RG8UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8U
+ { KTX_RG8_SNORM, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8S
+ { KTX_RG16, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16
+ { KTX_RG16I, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16
+ { KTX_RG16UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16
+ { KTX_RG16F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG16F
+ { KTX_RG16_SNORM, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16S
+ { KTX_RG32I, KTX_ZERO, KTX_RG, KTX_INT, }, // RG32I
+ { KTX_RG32UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_INT, }, // RG32U
+ { KTX_RG32F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG32F
+ { KTX_RGB8, KTX_SRGB8, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8
+ { KTX_RGB8I, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8I
+ { KTX_RGB8UI, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8U
+ { KTX_RGB8_SNORM, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8S
+ { KTX_RGB9_E5, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_5_9_9_9_REV, }, // RGB9E5F
+ { KTX_BGRA, KTX_SRGB8_ALPHA8, KTX_BGRA, KTX_UNSIGNED_BYTE, }, // BGRA8
+ { KTX_RGBA8, KTX_SRGB8_ALPHA8, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8
+ { KTX_RGBA8I, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8I
+ { KTX_RGBA8UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8U
+ { KTX_RGBA8_SNORM, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8S
+ { KTX_RGBA16, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16
+ { KTX_RGBA16I, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16I
+ { KTX_RGBA16UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16U
+ { KTX_RGBA16F, KTX_ZERO, KTX_RGBA, KTX_HALF_FLOAT, }, // RGBA16F
+ { KTX_RGBA16_SNORM, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16S
+ { KTX_RGBA32I, KTX_ZERO, KTX_RGBA, KTX_INT, }, // RGBA32I
+ { KTX_RGBA32UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT, }, // RGBA32U
+ { KTX_RGBA32F, KTX_ZERO, KTX_RGBA, KTX_FLOAT, }, // RGBA32F
+ { KTX_RGB565, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_SHORT_5_6_5, }, // R5G6B5
+ { KTX_RGBA4, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_4_4_4_4, }, // RGBA4
+ { KTX_RGB5_A1, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_5_5_5_1, }, // RGB5A1
+ { KTX_RGB10_A2, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT_2_10_10_10_REV, }, // RGB10A2
+ { KTX_R11F_G11F_B10F, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_10F_11F_11F_REV, }, // RG11B10F
+ };
+ BX_STATIC_ASSERT(TextureFormat::UnknownDepth == BX_COUNTOF(s_translateKtxFormat) );
+
+ struct KtxFormatInfo2
+ {
+ uint32_t m_internalFmt;
+ TextureFormat::Enum m_format;
+ };
+
+ static const KtxFormatInfo2 s_translateKtxFormat2[] =
+ {
+ { KTX_A8, TextureFormat::A8 },
+ { KTX_RED, TextureFormat::R8 },
+ { KTX_RGB, TextureFormat::RGB8 },
+ { KTX_RGBA, TextureFormat::RGBA8 },
+ { KTX_COMPRESSED_RGB_S3TC_DXT1_EXT, TextureFormat::BC1 },
+ };
+
+ bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ uint8_t identifier[8];
+ bx::read(_reader, identifier);
+
+ if (identifier[1] != '1'
+ && identifier[2] != '1')
+ {
+ return false;
+ }
+
+ uint32_t endianness;
+ bx::read(_reader, endianness);
+
+ bool fromLittleEndian = 0x04030201 == endianness;
+
+ uint32_t glType;
+ bx::readHE(_reader, glType, fromLittleEndian);
+
+ uint32_t glTypeSize;
+ bx::readHE(_reader, glTypeSize, fromLittleEndian);
+
+ uint32_t glFormat;
+ bx::readHE(_reader, glFormat, fromLittleEndian);
+
+ uint32_t glInternalFormat;
+ bx::readHE(_reader, glInternalFormat, fromLittleEndian);
+
+ uint32_t glBaseInternalFormat;
+ bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian);
+
+ uint32_t width;
+ bx::readHE(_reader, width, fromLittleEndian);
+
+ uint32_t height;
+ bx::readHE(_reader, height, fromLittleEndian);
+
+ uint32_t depth;
+ bx::readHE(_reader, depth, fromLittleEndian);
+
+ uint32_t numberOfArrayElements;
+ bx::readHE(_reader, numberOfArrayElements, fromLittleEndian);
+
+ uint32_t numFaces;
+ bx::readHE(_reader, numFaces, fromLittleEndian);
+
+ uint32_t numMips;
+ bx::readHE(_reader, numMips, fromLittleEndian);
+
+ uint32_t metaDataSize;
+ bx::readHE(_reader, metaDataSize, fromLittleEndian);
+
+ // skip meta garbage...
+ int64_t offset = bx::skip(_reader, metaDataSize);
+
+ TextureFormat::Enum format = TextureFormat::Unknown;
+ bool hasAlpha = false;
+
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii)
+ {
+ if (s_translateKtxFormat[ii].m_internalFmt == glInternalFormat)
+ {
+ format = TextureFormat::Enum(ii);
+ break;
+ }
+ }
+
+ if (TextureFormat::Unknown == format)
+ {
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat2); ++ii)
+ {
+ if (s_translateKtxFormat2[ii].m_internalFmt == glInternalFormat)
+ {
+ format = s_translateKtxFormat2[ii].m_format;
+ break;
+ }
+ }
+ }
+
+ _imageContainer.m_allocator = NULL;
+ _imageContainer.m_data = NULL;
+ _imageContainer.m_size = 0;
+ _imageContainer.m_offset = (uint32_t)offset;
+ _imageContainer.m_width = width;
+ _imageContainer.m_height = height;
+ _imageContainer.m_depth = depth;
+ _imageContainer.m_format = format;
+ _imageContainer.m_orientation = Orientation::R0;
+ _imageContainer.m_numLayers = uint16_t(bx::uint32_max(numberOfArrayElements, 1) );
+ _imageContainer.m_numMips = uint8_t(bx::uint32_max(numMips, 1) );
+ _imageContainer.m_hasAlpha = hasAlpha;
+ _imageContainer.m_cubeMap = numFaces > 1;
+ _imageContainer.m_ktx = true;
+ _imageContainer.m_ktxLE = fromLittleEndian;
+ _imageContainer.m_srgb = false;
+
+ if (TextureFormat::Unknown == format)
+ {
+ BX_ERROR_SET(_err, BIMG_ERROR, "Unrecognized image format.");
+ return false;
+ }
+
+ return true;
+ }
+
+ ImageContainer* imageParseKtx(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
+ {
+ return imageParseT<KTX_MAGIC, imageParseKtx>(_allocator, _src, _size, _err);
+ }
+
+// PVR3
+#define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) )
+
+#define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3)
+#define PVR3_HEADER_SIZE 52
+
+#define PVR3_PVRTC1_2BPP_RGB 0
+#define PVR3_PVRTC1_2BPP_RGBA 1
+#define PVR3_PVRTC1_4BPP_RGB 2
+#define PVR3_PVRTC1_4BPP_RGBA 3
+#define PVR3_PVRTC2_2BPP_RGBA 4
+#define PVR3_PVRTC2_4BPP_RGBA 5
+#define PVR3_ETC1 6
+#define PVR3_DXT1 7
+#define PVR3_DXT2 8
+#define PVR3_DXT3 9
+#define PVR3_DXT4 10
+#define PVR3_DXT5 11
+#define PVR3_BC4 12
+#define PVR3_BC5 13
+#define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0)
+#define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0)
+#define PVR3_R32 PVR3_MAKE8CC('r', 0, 0, 0, 32, 0, 0, 0)
+#define PVR3_RG8 PVR3_MAKE8CC('r', 'g', 0, 0, 8, 8, 0, 0)
+#define PVR3_RG16 PVR3_MAKE8CC('r', 'g', 0, 0, 16, 16, 0, 0)
+#define PVR3_RG32 PVR3_MAKE8CC('r', 'g', 0, 0, 32, 32, 0, 0)
+#define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8)
+#define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16)
+#define PVR3_RGBA32 PVR3_MAKE8CC('r', 'g', 'b', 'a', 32, 32, 32, 32)
+#define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0)
+#define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4)
+#define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1)
+#define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2)
+
+#define PVR3_CHANNEL_TYPE_ANY UINT32_MAX
+#define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12)
+
+ struct TranslatePvr3Format
+ {
+ uint64_t m_format;
+ uint32_t m_channelTypeMask;
+ TextureFormat::Enum m_textureFormat;
+ };
+
+ static const TranslatePvr3Format s_translatePvr3Format[] =
+ {
+ { PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 },
+ { PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A },
+ { PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 },
+ { PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A },
+ { PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 },
+ { PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 },
+ { PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 },
+ { PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 },
+ { PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
+ { PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 },
+ { PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
+ { PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 },
+ { PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 },
+ { PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 },
+ { PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 },
+ { PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16U },
+ { PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F },
+ { PVR3_R32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R32U },
+ { PVR3_R32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R32F },
+ { PVR3_RG8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG8 },
+ { PVR3_RG16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
+ { PVR3_RG16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG16F },
+ { PVR3_RG32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 },
+ { PVR3_RG32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG32F },
+ { PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 },
+ { PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 },
+ { PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F },
+ { PVR3_RGBA32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA32U },
+ { PVR3_RGBA32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA32F },
+ { PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 },
+ { PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 },
+ { PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 },
+ { PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 },
+ };
+
+ bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ uint32_t flags;
+ bx::read(_reader, flags);
+
+ uint64_t pixelFormat;
+ bx::read(_reader, pixelFormat);
+
+ uint32_t colorSpace;
+ bx::read(_reader, colorSpace); // 0 - linearRGB, 1 - sRGB
+
+ uint32_t channelType;
+ bx::read(_reader, channelType);
+
+ uint32_t height;
+ bx::read(_reader, height);
+
+ uint32_t width;
+ bx::read(_reader, width);
+
+ uint32_t depth;
+ bx::read(_reader, depth);
+
+ uint32_t numSurfaces;
+ bx::read(_reader, numSurfaces);
+
+ uint32_t numFaces;
+ bx::read(_reader, numFaces);
+
+ uint32_t numMips;
+ bx::read(_reader, numMips);
+
+ uint32_t metaDataSize;
+ bx::read(_reader, metaDataSize);
+
+ // skip meta garbage...
+ int64_t offset = bx::skip(_reader, metaDataSize);
+
+ TextureFormat::Enum format = TextureFormat::Unknown;
+ bool hasAlpha = false;
+
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii)
+ {
+ if (s_translatePvr3Format[ii].m_format == pixelFormat
+ && channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) )
+ {
+ format = s_translatePvr3Format[ii].m_textureFormat;
+ break;
+ }
+ }
+
+ _imageContainer.m_allocator = NULL;
+ _imageContainer.m_data = NULL;
+ _imageContainer.m_size = 0;
+ _imageContainer.m_offset = (uint32_t)offset;
+ _imageContainer.m_width = width;
+ _imageContainer.m_height = height;
+ _imageContainer.m_depth = depth;
+ _imageContainer.m_format = format;
+ _imageContainer.m_orientation = Orientation::R0;
+ _imageContainer.m_numLayers = 1;
+ _imageContainer.m_numMips = uint8_t(bx::uint32_max(numMips, 1) );
+ _imageContainer.m_hasAlpha = hasAlpha;
+ _imageContainer.m_cubeMap = numFaces > 1;
+ _imageContainer.m_ktx = false;
+ _imageContainer.m_ktxLE = false;
+ _imageContainer.m_srgb = colorSpace > 0;
+
+ return TextureFormat::Unknown != format;
+ }
+
+ ImageContainer* imageParsePvr3(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err)
+ {
+ return imageParseT<PVR3_MAGIC, imageParsePvr3>(_allocator, _src, _size, _err);
+ }
+
+ bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ uint32_t magic;
+ bx::read(_reader, magic, _err);
+
+ if (DDS_MAGIC == magic)
+ {
+ return imageParseDds(_imageContainer, _reader, _err);
+ }
+ else if (KTX_MAGIC == magic)
+ {
+ return imageParseKtx(_imageContainer, _reader, _err);
+ }
+ else if (PVR3_MAGIC == magic)
+ {
+ return imageParsePvr3(_imageContainer, _reader, _err);
+ }
+ else if (BIMG_CHUNK_MAGIC_TEX == magic)
+ {
+ TextureCreate tc;
+ bx::read(_reader, tc);
+
+ _imageContainer.m_format = tc.m_format;
+ _imageContainer.m_orientation = Orientation::R0;
+ _imageContainer.m_offset = UINT32_MAX;
+ _imageContainer.m_allocator = NULL;
+ if (NULL == tc.m_mem)
+ {
+ _imageContainer.m_data = NULL;
+ _imageContainer.m_size = 0;
+ }
+ else
+ {
+ _imageContainer.m_data = tc.m_mem->data;
+ _imageContainer.m_size = tc.m_mem->size;
+ }
+ _imageContainer.m_width = tc.m_width;
+ _imageContainer.m_height = tc.m_height;
+ _imageContainer.m_depth = tc.m_depth;
+ _imageContainer.m_numLayers = tc.m_numLayers;
+ _imageContainer.m_numMips = tc.m_numMips;
+ _imageContainer.m_hasAlpha = false;
+ _imageContainer.m_cubeMap = tc.m_cubeMap;
+ _imageContainer.m_ktx = false;
+ _imageContainer.m_ktxLE = false;
+ _imageContainer.m_srgb = false;
+
+ return _err->isOk();
+ }
+
+ BX_TRACE("Unrecognized image format (magic: 0x%08x)!", magic);
+ BX_ERROR_SET(_err, BIMG_ERROR, "Unrecognized image format.");
+
+ return false;
+ }
+
+ bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ bx::MemoryReader reader(_data, _size);
+ return imageParse(_imageContainer, &reader, _err);
+ }
+
+ void imageDecodeToR8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
+ {
+ const uint8_t* src = (const uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
+ const uint32_t srcPitch = _width*srcBpp/8;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz, src += _height*srcPitch, dst += _height*_dstPitch)
+ {
+ if (isCompressed(_srcFormat))
+ {
+ uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, TextureFormat::RGBA8);
+ void* temp = BX_ALLOC(_allocator, size);
+ imageDecodeToRgba8(temp, _src, _width, _height, _width*4, _srcFormat);
+ imageConvert(dst, TextureFormat::R8, temp, TextureFormat::RGBA8, _width, _height, 1, _width*4);
+ BX_FREE(_allocator, temp);
+ }
+ else
+ {
+ imageConvert(dst, TextureFormat::R8, src, _srcFormat, _width, _height, 1, srcPitch);
+ }
+ }
+ }
+
+ void imageDecodeToBgra8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
+ {
+ const uint8_t* src = (const uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ uint32_t width = _width/4;
+ uint32_t height = _height/4;
+
+ uint8_t temp[16*4];
+
+ switch (_srcFormat)
+ {
+ case TextureFormat::BC1:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockDxt1(temp, src);
+ src += 8;
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::BC2:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockDxt23A(temp+3, src);
+ src += 8;
+ decodeBlockDxt(temp, src);
+ src += 8;
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::BC3:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockDxt45A(temp+3, src);
+ src += 8;
+ decodeBlockDxt(temp, src);
+ src += 8;
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::BC4:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockDxt45A(temp, src);
+ src += 8;
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::BC5:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockDxt45A(temp+2, src);
+ src += 8;
+ decodeBlockDxt45A(temp+1, src);
+ src += 8;
+
+ for (uint32_t ii = 0; ii < 16; ++ii)
+ {
+ float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
+ float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
+ float nz = bx::fsqrt(1.0f - nx*nx - ny*ny);
+ temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f);
+ temp[ii*4+3] = 0;
+ }
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::ETC1:
+ case TextureFormat::ETC2:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockEtc12(temp, src);
+ src += 8;
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::ETC2A:
+ BX_WARN(false, "ETC2A decoder is not implemented.");
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) );
+ break;
+
+ case TextureFormat::ETC2A1:
+ BX_WARN(false, "ETC2A1 decoder is not implemented.");
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000) );
+ break;
+
+ case TextureFormat::PTC12:
+ BX_WARN(false, "PTC12 decoder is not implemented.");
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff) );
+ break;
+
+ case TextureFormat::PTC12A:
+ BX_WARN(false, "PTC12A decoder is not implemented.");
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) );
+ break;
+
+ case TextureFormat::PTC14:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockPtc14(temp, src, xx, yy, width, height);
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::PTC14A:
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ decodeBlockPtc14A(temp, src, xx, yy, width, height);
+
+ uint8_t* block = &dst[yy*_dstPitch*4 + xx*16];
+ bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16);
+ bx::memCopy(&block[1*_dstPitch], &temp[16], 16);
+ bx::memCopy(&block[2*_dstPitch], &temp[32], 16);
+ bx::memCopy(&block[3*_dstPitch], &temp[48], 16);
+ }
+ }
+ break;
+
+ case TextureFormat::PTC22:
+ BX_WARN(false, "PTC22 decoder is not implemented.");
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff) );
+ break;
+
+ case TextureFormat::PTC24:
+ BX_WARN(false, "PTC24 decoder is not implemented.");
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff) );
+ break;
+
+ case TextureFormat::RGBA8:
+ {
+ const uint32_t srcPitch = _width * 4;
+ imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _src, srcPitch);
+ }
+ break;
+
+ case TextureFormat::BGRA8:
+ {
+ const uint32_t srcPitch = _width * 4;
+ const uint32_t size = bx::uint32_min(srcPitch, _dstPitch);
+ bx::memCopy(_dst, _src, size, _height, srcPitch, _dstPitch);
+ }
+ break;
+
+ default:
+ {
+ const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
+ const uint32_t srcPitch = _width * srcBpp / 8;
+ if (!imageConvert(_dst, TextureFormat::BGRA8, _src, _srcFormat, _width, _height, 1, srcPitch) )
+ {
+ // Failed to convert, just make ugly red-yellow checkerboard texture.
+ imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00) );
+ }
+ }
+ break;
+ }
+ }
+
+ void imageDecodeToRgba8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
+ {
+ switch (_srcFormat)
+ {
+ case TextureFormat::RGBA8:
+ {
+ const uint32_t srcPitch = _width * 4;
+ const uint32_t size = bx::uint32_min(srcPitch, _dstPitch);
+ bx::memCopy(_dst, _src, size, _height, srcPitch, _dstPitch);
+ }
+ break;
+
+ case TextureFormat::BGRA8:
+ {
+ const uint32_t srcPitch = _width * 4;
+ imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _src, srcPitch);
+ }
+ break;
+
+ default:
+ {
+ const uint32_t srcPitch = _width * 4;
+ imageDecodeToBgra8(_dst, _src, _width, _height, _dstPitch, _srcFormat);
+ imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _dst, srcPitch);
+ }
+ break;
+ }
+ }
+
+ void imageRgba8ToRgba32fRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstWidth = _width;
+ const uint32_t dstHeight = _height;
+
+ if (0 == dstWidth
+ || 0 == dstHeight)
+ {
+ return;
+ }
+
+ float* dst = (float*)_dst;
+ const uint8_t* src = (const uint8_t*)_src;
+
+ for (uint32_t yy = 0, ystep = _srcPitch; yy < dstHeight; ++yy, src += ystep)
+ {
+ const uint8_t* rgba = src;
+ for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 4, dst += 4)
+ {
+ dst[0] = bx::fpow(rgba[0], 2.2f);
+ dst[1] = bx::fpow(rgba[1], 2.2f);
+ dst[2] = bx::fpow(rgba[2], 2.2f);
+ dst[3] = rgba[3];
+ }
+ }
+ }
+
+ void imageRgba8ToRgba32f(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src)
+ {
+ const uint32_t dstWidth = _width;
+ const uint32_t dstHeight = _height;
+
+ if (0 == dstWidth
+ || 0 == dstHeight)
+ {
+ return;
+ }
+
+ float* dst = (float*)_dst;
+ const uint8_t* src = (const uint8_t*)_src;
+
+ using namespace bx;
+ const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f);
+ const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000);
+ const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000);
+ const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f);
+
+ for (uint32_t yy = 0, ystep = _srcPitch; yy < dstHeight; ++yy, src += ystep)
+ {
+ const uint8_t* rgba = src;
+ for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 4, dst += 4)
+ {
+ const simd128_t abgr0 = simd_splat(rgba);
+ const simd128_t abgr0m = simd_and(abgr0, umask);
+ const simd128_t abgr0x = simd_xor(abgr0m, wflip);
+ const simd128_t abgr0f = simd_itof(abgr0x);
+ const simd128_t abgr0c = simd_add(abgr0f, wadd);
+ const simd128_t abgr0n = simd_mul(abgr0c, unpack);
+
+ simd_st(dst, abgr0n);
+ }
+ }
+ }
+
+ void imageDecodeToRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _dstPitch, TextureFormat::Enum _srcFormat)
+ {
+ const uint8_t* src = (const uint8_t*)_src;
+ uint8_t* dst = (uint8_t*)_dst;
+
+ const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel;
+ const uint32_t srcPitch = _width*srcBpp/8;
+
+ for (uint32_t zz = 0; zz < _depth; ++zz, src += _height*srcPitch, dst += _height*_dstPitch)
+ {
+ switch (_srcFormat)
+ {
+ case TextureFormat::BC5:
+ {
+ uint32_t width = _width/4;
+ uint32_t height = _height/4;
+
+ const uint8_t* srcData = src;
+
+ for (uint32_t yy = 0; yy < height; ++yy)
+ {
+ for (uint32_t xx = 0; xx < width; ++xx)
+ {
+ uint8_t temp[16*4];
+
+ decodeBlockDxt45A(temp+2, srcData);
+ srcData += 8;
+ decodeBlockDxt45A(temp+1, srcData);
+ srcData += 8;
+
+ for (uint32_t ii = 0; ii < 16; ++ii)
+ {
+ float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f;
+ float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f;
+ float nz = bx::fsqrt(1.0f - nx*nx - ny*ny);
+
+ const uint32_t offset = (yy*4 + ii/4)*_width*16 + (xx*4 + ii%4)*16;
+ float* block = (float*)&dst[offset];
+ block[0] = nx;
+ block[1] = ny;
+ block[2] = nz;
+ block[3] = 0.0f;
+ }
+ }
+ }
+ }
+ break;
+
+ case TextureFormat::RGBA32F:
+ bx::memCopy(dst, src, _dstPitch*_height);
+ break;
+
+ default:
+ if (isCompressed(_srcFormat) )
+ {
+ uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, TextureFormat::RGBA8);
+ void* temp = BX_ALLOC(_allocator, size);
+ imageDecodeToRgba8(temp, src, _width, _height, _width*4, _srcFormat);
+ imageRgba8ToRgba32f(dst, _width, _height, _width*4, temp);
+ BX_FREE(_allocator, temp);
+ }
+ else
+ {
+ imageConvert(dst, TextureFormat::RGBA32F, src, _srcFormat, _width, _height, 1, srcPitch);
+ }
+ break;
+ }
+ }
+ }
+
+ bool imageGetRawData(const ImageContainer& _imageContainer, uint16_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip)
+ {
+ uint32_t offset = _imageContainer.m_offset;
+ TextureFormat::Enum format = TextureFormat::Enum(_imageContainer.m_format);
+ bool hasAlpha = _imageContainer.m_hasAlpha;
+
+ const ImageBlockInfo& blockInfo = s_imageBlockInfo[format];
+ const uint8_t bpp = blockInfo.bitsPerPixel;
+ const uint32_t blockSize = blockInfo.blockSize;
+ const uint32_t blockWidth = blockInfo.blockWidth;
+ const uint32_t blockHeight = blockInfo.blockHeight;
+ const uint32_t minBlockX = blockInfo.minBlockX;
+ const uint32_t minBlockY = blockInfo.minBlockY;
+
+ if (UINT32_MAX == _imageContainer.m_offset)
+ {
+ if (NULL == _imageContainer.m_data)
+ {
+ return false;
+ }
+
+ offset = 0;
+ _data = _imageContainer.m_data;
+ _size = _imageContainer.m_size;
+ }
+
+ const uint8_t* data = (const uint8_t*)_data;
+ const uint16_t numSides = _imageContainer.m_numLayers * (_imageContainer.m_cubeMap ? 6 : 1);
+
+ if (_imageContainer.m_ktx)
+ {
+ uint32_t width = _imageContainer.m_width;
+ uint32_t height = _imageContainer.m_height;
+ uint32_t depth = _imageContainer.m_depth;
+
+ for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
+ {
+ width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
+ height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
+ depth = bx::uint32_max(1, depth);
+
+ const uint32_t mipSize = width*height*depth*bpp/8;
+
+ const uint32_t size = mipSize*numSides;
+ uint32_t imageSize = bx::toHostEndian(*(const uint32_t*)&data[offset], _imageContainer.m_ktxLE);
+ BX_CHECK(size == imageSize, "KTX: Image size mismatch %d (expected %d).", size, imageSize);
+ BX_UNUSED(size, imageSize);
+
+ offset += sizeof(uint32_t);
+
+ for (uint16_t side = 0; side < numSides; ++side)
+ {
+ if (side == _side
+ && lod == _lod)
+ {
+ _mip.m_width = width;
+ _mip.m_height = height;
+ _mip.m_depth = depth;
+ _mip.m_blockSize = blockSize;
+ _mip.m_size = mipSize;
+ _mip.m_data = &data[offset];
+ _mip.m_bpp = bpp;
+ _mip.m_format = format;
+ _mip.m_hasAlpha = hasAlpha;
+ return true;
+ }
+
+ offset += mipSize;
+
+ BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
+ BX_UNUSED(_size);
+ }
+
+ width >>= 1;
+ height >>= 1;
+ depth >>= 1;
+ }
+ }
+ else
+ {
+ for (uint16_t side = 0; side < numSides; ++side)
+ {
+ uint32_t width = _imageContainer.m_width;
+ uint32_t height = _imageContainer.m_height;
+ uint32_t depth = _imageContainer.m_depth;
+
+ for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod)
+ {
+ width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
+ height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
+ depth = bx::uint32_max(1, depth);
+
+ uint32_t size = width*height*depth*bpp/8;
+
+ if (side == _side
+ && lod == _lod)
+ {
+ _mip.m_width = width;
+ _mip.m_height = height;
+ _mip.m_depth = depth;
+ _mip.m_blockSize = blockSize;
+ _mip.m_size = size;
+ _mip.m_data = &data[offset];
+ _mip.m_bpp = bpp;
+ _mip.m_format = format;
+ _mip.m_hasAlpha = hasAlpha;
+ return true;
+ }
+
+ offset += size;
+
+ BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size);
+ BX_UNUSED(_size);
+
+ width >>= 1;
+ height >>= 1;
+ depth >>= 1;
+ }
+ }
+ }
+
+ return false;
+ }
+
+ int32_t imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ uint8_t type = _grayscale ? 3 : 2;
+ uint8_t bpp = _grayscale ? 8 : 32;
+
+ uint8_t header[18] = {};
+ header[ 2] = type;
+ header[12] = _width &0xff;
+ header[13] = (_width >>8)&0xff;
+ header[14] = _height &0xff;
+ header[15] = (_height>>8)&0xff;
+ header[16] = bpp;
+ header[17] = 32;
+
+ int32_t total = 0;
+ total += bx::write(_writer, header, sizeof(header), _err);
+
+ uint32_t dstPitch = _width*bpp/8;
+ if (_yflip)
+ {
+ const uint8_t* data = (const uint8_t*)_src + _srcPitch*_height - _srcPitch;
+ for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
+ {
+ total += bx::write(_writer, data, dstPitch, _err);
+ data -= _srcPitch;
+ }
+ }
+ else if (_srcPitch == dstPitch)
+ {
+ total += bx::write(_writer, _src, _height*_srcPitch, _err);
+ }
+ else
+ {
+ const uint8_t* data = (const uint8_t*)_src;
+ for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy)
+ {
+ total += bx::write(_writer, data, dstPitch, _err);
+ data += _srcPitch;
+ }
+ }
+
+ return total;
+ }
+
+ template<typename Ty>
+ class HashWriter : public bx::WriterI
+ {
+ public:
+ HashWriter(bx::WriterI* _writer)
+ : m_writer(_writer)
+ {
+ begin();
+ }
+
+ void begin()
+ {
+ m_hash.begin();
+ }
+
+ uint32_t end()
+ {
+ return m_hash.end();
+ }
+
+ virtual int32_t write(const void* _data, int32_t _size, bx::Error* _err) override
+ {
+ m_hash.add(_data, _size);
+ return m_writer->write(_data, _size, _err);
+ }
+
+ private:
+ Ty m_hash;
+ bx::WriterI* m_writer;
+ };
+
+ int32_t imageWritePng(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ int32_t total = 0;
+ total += bx::write(_writer, "\x89PNG\r\n\x1a\n", _err);
+ total += bx::write(_writer, bx::toBigEndian<uint32_t>(13), _err);
+
+ HashWriter<bx::HashCrc32> writerC(_writer);
+ total += bx::write(&writerC, "IHDR", _err);
+ total += bx::write(&writerC, bx::toBigEndian(_width), _err);
+ total += bx::write(&writerC, bx::toBigEndian(_height), _err);
+ total += bx::write(&writerC, "\x08\x06", _err);
+ total += bx::writeRep(&writerC, 0, 3, _err);
+ total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err);
+
+ const uint32_t bpp = _grayscale ? 8 : 32;
+ const uint32_t stride = _width*bpp/8;
+ const uint16_t zlen = bx::toLittleEndian<uint16_t>(uint16_t(stride + 1) );
+ const uint16_t zlenC = bx::toLittleEndian<uint16_t>(~zlen);
+
+ total += bx::write(_writer, bx::toBigEndian<uint32_t>(_height*(stride+6)+6), _err);
+
+ writerC.begin();
+ total += bx::write(&writerC, "IDAT", _err);
+ total += bx::write(&writerC, "\x78\x9c", _err);
+
+ const uint8_t* data = (const uint8_t*)_src;
+ int32_t step = int32_t(_srcPitch);
+ if (_yflip)
+ {
+ data += _srcPitch*_height - _srcPitch;
+ step = -step;
+ }
+
+ HashWriter<bx::HashAdler32> writerA(&writerC);
+
+ for (uint32_t ii = 0; ii < _height && _err->isOk(); ++ii)
+ {
+ total += bx::write(&writerC, uint8_t(ii == _height-1 ? 1 : 0), _err);
+ total += bx::write(&writerC, zlen, _err);
+ total += bx::write(&writerC, zlenC, _err);
+
+ total += bx::write(&writerA, uint8_t(0), _err);
+
+ if (_grayscale)
+ {
+ total += bx::write(&writerA, data, stride, _err);
+ }
+ else
+ {
+ for (uint32_t xx = 0; xx < _width; ++xx)
+ {
+ const uint8_t* bgra = &data[xx*4];
+ const uint8_t bb = bgra[0];
+ const uint8_t gg = bgra[1];
+ const uint8_t rr = bgra[2];
+ const uint8_t aa = bgra[3];
+ total += bx::write(&writerA, rr, _err);
+ total += bx::write(&writerA, gg, _err);
+ total += bx::write(&writerA, bb, _err);
+ total += bx::write(&writerA, aa, _err);
+ }
+ }
+
+ data += step;
+ }
+ total += bx::write(&writerC, bx::toBigEndian(writerA.end() ), _err);
+ total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err);
+
+ total += bx::write(&writerC, uint32_t(0), _err);
+ writerC.begin();
+ total += bx::write(&writerC, "IEND", _err);
+ total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err);
+
+ return total;
+ }
+
+ static int32_t imageWriteDdsHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ uint32_t ddspf = UINT32_MAX;
+ uint32_t dxgiFormat = UINT32_MAX;
+
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii)
+ {
+ if (s_translateDdsPixelFormat[ii].m_textureFormat == _format)
+ {
+ ddspf = ii;
+ break;
+ }
+ }
+
+ if (UINT32_MAX == ddspf)
+ {
+ for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii)
+ {
+ if (s_translateDxgiFormat[ii].m_textureFormat == _format)
+ {
+ dxgiFormat = s_translateDxgiFormat[ii].m_format;
+ break;
+ }
+ }
+
+ if (UINT32_MAX == dxgiFormat)
+ {
+ BX_ERROR_SET(_err, BIMG_ERROR, "DDS: DXGI format not supported.");
+ return 0;
+ }
+ }
+
+ const uint32_t bpp = getBitsPerPixel(_format);
+
+ uint32_t total = 0;
+ total += bx::write(_writer, uint32_t(DDS_MAGIC), _err);
+
+ uint32_t headerStart = total;
+ total += bx::write(_writer, uint32_t(DDS_HEADER_SIZE), _err);
+ total += bx::write(_writer, uint32_t(0
+ | DDSD_HEIGHT
+ | DDSD_WIDTH
+ | DDSD_PIXELFORMAT
+ | DDSD_CAPS
+ | (1 < _depth ? DDSD_DEPTH : 0)
+ | (1 < _numMips ? DDSD_MIPMAPCOUNT : 0)
+ | (isCompressed(_format) ? DDSD_LINEARSIZE : DDSD_PITCH)
+ )
+ , _err
+ );
+ const uint32_t pitchOrLinearSize = isCompressed(_format)
+ ? _width*_height*bpp/8
+ : _width*bpp/8
+ ;
+
+ total += bx::write(_writer, _height, _err);
+ total += bx::write(_writer, _width, _err);
+ total += bx::write(_writer, pitchOrLinearSize, _err);
+ total += bx::write(_writer, _depth, _err);
+ total += bx::write(_writer, uint32_t(_numMips), _err);
+
+ total += bx::writeRep(_writer, 0, 44, _err); // reserved1
+
+ if (UINT32_MAX != ddspf)
+ {
+ const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ddspf];
+
+ total += bx::write(_writer, uint32_t(8*sizeof(uint32_t) ), _err); // pixelFormatSize
+ total += bx::write(_writer, pf.m_flags, _err);
+ total += bx::write(_writer, uint32_t(0), _err);
+ total += bx::write(_writer, pf.m_bitCount, _err);
+ total += bx::write(_writer, pf.m_bitmask, _err);
+ }
+ else
+ {
+ total += bx::write(_writer, uint32_t(8*sizeof(uint32_t) ), _err); // pixelFormatSize
+ total += bx::write(_writer, uint32_t(DDPF_FOURCC), _err);
+ total += bx::write(_writer, uint32_t(DDS_DX10), _err);
+ total += bx::write(_writer, uint32_t(0), _err); // bitCount
+ total += bx::writeRep(_writer, 0, 4*sizeof(uint32_t), _err); // bitmask
+ }
+
+ uint32_t caps[4] =
+ {
+ uint32_t(DDSCAPS_TEXTURE | (1 < _numMips ? DDSCAPS_COMPLEX|DDSCAPS_MIPMAP : 0) ),
+ uint32_t(_cubeMap ? DDSCAPS2_CUBEMAP|DSCAPS2_CUBEMAP_ALLSIDES : 0),
+ 0,
+ 0,
+ };
+ total += bx::write(_writer, caps, sizeof(caps) );
+
+ total += bx::writeRep(_writer, 0, 4, _err); // reserved2
+
+ BX_WARN(total-headerStart == DDS_HEADER_SIZE
+ , "DDS: Failed to write header size %d (expected: %d)."
+ , total-headerStart
+ , DDS_HEADER_SIZE
+ );
+
+ if (UINT32_MAX != dxgiFormat)
+ {
+ total += bx::write(_writer, dxgiFormat);
+ total += bx::write(_writer, uint32_t(1 < _depth ? DDS_DX10_DIMENSION_TEXTURE3D : DDS_DX10_DIMENSION_TEXTURE2D), _err); // dims
+ total += bx::write(_writer, uint32_t(_cubeMap ? DDS_DX10_MISC_TEXTURECUBE : 0), _err); // miscFlags
+ total += bx::write(_writer, uint32_t(1), _err); // arraySize
+ total += bx::write(_writer, uint32_t(0), _err); // miscFlags2
+
+ BX_WARN(total-headerStart == DDS_HEADER_SIZE+20
+ , "DDS: Failed to write header size %d (expected: %d)."
+ , total-headerStart
+ , DDS_HEADER_SIZE+20
+ );
+ BX_UNUSED(headerStart);
+ }
+
+ return total;
+ }
+
+ int32_t imageWriteDds(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ int32_t total = 0;
+ total += imageWriteDdsHeader(_writer
+ , TextureFormat::Enum(_imageContainer.m_format)
+ , _imageContainer.m_cubeMap
+ , _imageContainer.m_width
+ , _imageContainer.m_height
+ , _imageContainer.m_depth
+ , _imageContainer.m_numMips
+ , _err
+ );
+
+ if (!_err->isOk() )
+ {
+ return total;
+ }
+
+ for (uint8_t side = 0, numSides = _imageContainer.m_cubeMap ? 6 : 1; side < numSides && _err->isOk(); ++side)
+ {
+ for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num && _err->isOk(); ++lod)
+ {
+ ImageMip mip;
+ if (imageGetRawData(_imageContainer, side, lod, _data, _size, mip) )
+ {
+ total += bx::write(_writer, mip.m_data, mip.m_size, _err);
+ }
+ }
+ }
+
+ return total;
+ }
+
+ static int32_t imageWriteKtxHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ const KtxFormatInfo& tfi = s_translateKtxFormat[_format];
+
+ int32_t total = 0;
+ total += bx::write(_writer, "\xabKTX 11\xbb\r\n\x1a\n", 12, _err);
+ total += bx::write(_writer, uint32_t(0x04030201), _err);
+ total += bx::write(_writer, uint32_t(0), _err); // glType
+ total += bx::write(_writer, uint32_t(1), _err); // glTypeSize
+ total += bx::write(_writer, uint32_t(0), _err); // glFormat
+ total += bx::write(_writer, tfi.m_internalFmt, _err); // glInternalFormat
+ total += bx::write(_writer, tfi.m_fmt, _err); // glBaseInternalFormat
+ total += bx::write(_writer, _width, _err);
+ total += bx::write(_writer, _height, _err);
+ total += bx::write(_writer, _depth, _err);
+ total += bx::write(_writer, _numLayers, _err); // numberOfArrayElements
+ total += bx::write(_writer, _cubeMap ? uint32_t(6) : uint32_t(0), _err);
+ total += bx::write(_writer, uint32_t(_numMips), _err);
+ total += bx::write(_writer, uint32_t(0), _err); // Meta-data size.
+
+ BX_WARN(total == 64, "KTX: Failed to write header size %d (expected: %d).", total, 64);
+ return total;
+ }
+
+ int32_t imageWriteKtx(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, const void* _src, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ int32_t total = 0;
+ total += imageWriteKtxHeader(_writer, _format, _cubeMap, _width, _height, _depth, _numMips, _numLayers, _err);
+
+ if (!_err->isOk() )
+ {
+ return total;
+ }
+
+ const ImageBlockInfo& blockInfo = s_imageBlockInfo[_format];
+ const uint8_t bpp = blockInfo.bitsPerPixel;
+ const uint32_t blockWidth = blockInfo.blockWidth;
+ const uint32_t blockHeight = blockInfo.blockHeight;
+ const uint32_t minBlockX = blockInfo.minBlockX;
+ const uint32_t minBlockY = blockInfo.minBlockY;
+
+ const uint8_t* src = (const uint8_t*)_src;
+
+ const uint32_t numLayers = bx::uint32_max(_numLayers, 1);
+ const uint32_t numSides = _cubeMap ? 6 : 1;
+
+ uint32_t width = _width;
+ uint32_t height = _height;
+ uint32_t depth = _depth;
+
+ for (uint8_t lod = 0; lod < _numMips && _err->isOk(); ++lod)
+ {
+ width = bx::uint32_max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth);
+ height = bx::uint32_max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight);
+ depth = bx::uint32_max(1, depth);
+
+ const uint32_t mipSize = width*height*depth*bpp/8;
+ const uint32_t size = mipSize*numLayers*numSides;
+ total += bx::write(_writer, size, _err);
+
+ for (uint32_t layer = 0; layer < numLayers && _err->isOk(); ++layer)
+ {
+ for (uint8_t side = 0; side < numSides && _err->isOk(); ++side)
+ {
+ total += bx::write(_writer, src, size, _err);
+ src += size;
+ }
+ }
+
+ width >>= 1;
+ height >>= 1;
+ depth >>= 1;
+ }
+
+ return total;
+ }
+
+ int32_t imageWriteKtx(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err)
+ {
+ BX_ERROR_SCOPE(_err);
+
+ int32_t total = 0;
+ total += imageWriteKtxHeader(_writer
+ , TextureFormat::Enum(_imageContainer.m_format)
+ , _imageContainer.m_cubeMap
+ , _imageContainer.m_width
+ , _imageContainer.m_height
+ , _imageContainer.m_depth
+ , _imageContainer.m_numMips
+ , _imageContainer.m_numLayers
+ , _err
+ );
+
+ if (!_err->isOk() )
+ {
+ return total;
+ }
+
+ const uint32_t numMips = _imageContainer.m_numMips;
+ const uint32_t numLayers = bx::uint32_max(_imageContainer.m_numLayers, 1);
+ const uint32_t numSides = _imageContainer.m_cubeMap ? 6 : 1;
+
+ for (uint8_t lod = 0; lod < numMips && _err->isOk(); ++lod)
+ {
+ ImageMip mip;
+ imageGetRawData(_imageContainer, 0, lod, _data, _size, mip);
+
+ const uint32_t size = mip.m_size*numSides*numLayers;
+ total += bx::write(_writer, size, _err);
+
+ for (uint32_t layer = 0; layer < numLayers && _err->isOk(); ++layer)
+ {
+ for (uint8_t side = 0; side < numSides && _err->isOk(); ++side)
+ {
+ if (imageGetRawData(_imageContainer, uint16_t(layer*numSides + side), lod, _data, _size, mip) )
+ {
+ total += bx::write(_writer, mip.m_data, mip.m_size, _err);
+ }
+ }
+ }
+ }
+
+ return total;
+ }
+
+} // namespace bimg