summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/drivers/model1.cpp
diff options
context:
space:
mode:
author Vas Crabb <vas@vastheman.com>2018-07-07 02:40:29 +1000
committer Vas Crabb <vas@vastheman.com>2018-07-07 02:40:29 +1000
commitc3fb11c2c98a5c28ece6a27093a0f9def350ac64 (patch)
treec68b38f05ed1d32358add721fda7f45e8803479f /src/mame/drivers/model1.cpp
parent5d9e33b786d7ef452317439359f3cbd8cc920513 (diff)
devcb3
There are multiple issues with the current device callbacks: * They always dispatch through a pointer-to-member * Chained callbacks are a linked list so the branch unit can't predict the early * There's a runtime decision made on the left/right shift direction * There are runtime NULL checks on various objects * Binding a lambda isn't practical * Arbitrary transformations are not supported * When chaining callbacks it isn't clear what the MCFG_DEVCB_ modifiers apply to * It isn't possible to just append to a callback in derived configuration * The macros need a magic, hidden local called devcb * Moving code that uses the magic locals around is error-prone * Writing the MCFG_ macros to make a device usable is a pain * You can't discover applicable MCFG_ macros with intellisense * Macros are not scoped * Using an inappropriate macro isn't detected at compile time * Lots of other things This changeset overcomes the biggest obstacle to remving MCFG_ macros altogether. Essentially, to allow a devcb to be configured, call .bind() and expose the result (a bind target for the callback). Bind target methods starting with "set" repace the current callbacks; methods starting with "append" append to them. You can't reconfigure a callback after resolving it. There's no need to use a macro matching the handler signatures - use FUNC for everything. Current device is implied if no tag/finder is supplied (no need for explicit this). Lambdas are supported, and the memory space and offset are optional. These kinds of things work: * .read_cb().set([this] () { return something; }); * .read_cb().set([this] (offs_t offset) { return ~offset; }); * .write_cb().set([this] (offs_t offset, u8 data) { m_array[offset] = data; }); * .write_cb().set([this] (int state) { some_var = state; }); Arbitrary transforms are allowed, and they can modify offset/mask for example: * .read_cb().set(FUNC(my_state::handler)).transform([] (u8 data) { return bitswap<4>(data, 1, 3, 0, 2); }); * .read_cb().set(m_dev, FUNC(some_device::member)).transform([] (offs_t &offset, u8 data) { offset ^= 3; return data; }); It's possible to stack arbitrary transforms, at the cost of compile time (the whole transform stack gets inlined at compile time). Shifts count as an arbitrary transform, but mask/exor does not. Order of mask/shift/exor now matters. Modifications are applied in the specified order. These are NOT EQUIVALENT: * .read_cb().set(FUNC(my_state::handler)).mask(0x06).lshift(2); * .read_cb().set(FUNC(my_state::handler)).lshift(2).mask(0x06); The bit helper no longer reverses its behaviour for read callbacks, and I/O ports are no longer aware of the field mask. Binding a read callback to no-op is not supported - specify a constant. The GND and VCC aliases have been removed intentionally - they're TTL-centric, and were already being abused. Other quirks have been preserved, including write logger only logging when the data is non-zero (quite unhelpful in many of the cases where it's used). Legacy syntax is still supported for simple cases, but will be phased out. New devices should not have MCFG_ macros. I don't think I've missed any fundamental issues, but if I've broken something, let me know.
Diffstat (limited to 'src/mame/drivers/model1.cpp')
-rw-r--r--src/mame/drivers/model1.cpp18
1 files changed, 8 insertions, 10 deletions
diff --git a/src/mame/drivers/model1.cpp b/src/mame/drivers/model1.cpp
index 1761909668d..257946d3c71 100644
--- a/src/mame/drivers/model1.cpp
+++ b/src/mame/drivers/model1.cpp
@@ -1710,15 +1710,15 @@ MACHINE_CONFIG_START(model1_state::model1)
MCFG_VIDEO_START_OVERRIDE(model1_state,model1)
- MCFG_SEGAM1AUDIO_ADD(M1AUDIO_TAG)
- MCFG_SEGAM1AUDIO_RXD_HANDLER(WRITELINE("m1uart", i8251_device, write_rxd))
+ SEGAM1AUDIO(config, m_m1audio, 0);
+ m_m1audio->rxd_handler().set(m_m1uart, FUNC(i8251_device::write_rxd));
- MCFG_DEVICE_ADD("m1uart", I8251, 8000000) // uPD71051C, clock unknown
- MCFG_I8251_TXD_HANDLER(WRITELINE(M1AUDIO_TAG, segam1audio_device, write_txd))
+ I8251(config, m_m1uart, 8000000); // uPD71051C, clock unknown
+ m_m1uart->txd_handler().set(m_m1audio, FUNC(segam1audio_device::write_txd));
- MCFG_CLOCK_ADD("m1uart_clock", 500000) // 16 times 31.25MHz (standard Sega/MIDI sound data rate)
- MCFG_CLOCK_SIGNAL_HANDLER(WRITELINE("m1uart", i8251_device, write_txc))
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("m1uart", i8251_device, write_rxc))
+ clock_device &m1uart_clock(CLOCK(config, "m1uart_clock", 500000)); // 16 times 31.25MHz (standard Sega/MIDI sound data rate)
+ m1uart_clock.signal_handler().set(m_m1uart, FUNC(i8251_device::write_txc));
+ m1uart_clock.signal_handler().append(m_m1uart, FUNC(i8251_device::write_rxc));
MACHINE_CONFIG_END
MACHINE_CONFIG_START(model1_state::model1_hle)
@@ -1781,9 +1781,7 @@ MACHINE_CONFIG_START(model1_state::swa)
MCFG_SOUND_ROUTE(1, "dright", 1.0)
// Apparently m1audio has to filter out commands the DSB shouldn't see
- MCFG_DEVICE_MODIFY(M1AUDIO_TAG)
- MCFG_SEGAM1AUDIO_RXD_HANDLER(WRITELINE("m1uart", i8251_device, write_rxd))
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE(DSBZ80_TAG, dsbz80_device, write_txd))
+ m_m1audio->rxd_handler().append(m_dsbz80, FUNC(dsbz80_device::write_txd));
MACHINE_CONFIG_END
MACHINE_CONFIG_START(model1_state::wingwar)