summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/drivers/microterm.cpp
diff options
context:
space:
mode:
author Vas Crabb <vas@vastheman.com>2018-07-07 02:40:29 +1000
committer Vas Crabb <vas@vastheman.com>2018-07-07 02:40:29 +1000
commitc3fb11c2c98a5c28ece6a27093a0f9def350ac64 (patch)
treec68b38f05ed1d32358add721fda7f45e8803479f /src/mame/drivers/microterm.cpp
parent5d9e33b786d7ef452317439359f3cbd8cc920513 (diff)
devcb3
There are multiple issues with the current device callbacks: * They always dispatch through a pointer-to-member * Chained callbacks are a linked list so the branch unit can't predict the early * There's a runtime decision made on the left/right shift direction * There are runtime NULL checks on various objects * Binding a lambda isn't practical * Arbitrary transformations are not supported * When chaining callbacks it isn't clear what the MCFG_DEVCB_ modifiers apply to * It isn't possible to just append to a callback in derived configuration * The macros need a magic, hidden local called devcb * Moving code that uses the magic locals around is error-prone * Writing the MCFG_ macros to make a device usable is a pain * You can't discover applicable MCFG_ macros with intellisense * Macros are not scoped * Using an inappropriate macro isn't detected at compile time * Lots of other things This changeset overcomes the biggest obstacle to remving MCFG_ macros altogether. Essentially, to allow a devcb to be configured, call .bind() and expose the result (a bind target for the callback). Bind target methods starting with "set" repace the current callbacks; methods starting with "append" append to them. You can't reconfigure a callback after resolving it. There's no need to use a macro matching the handler signatures - use FUNC for everything. Current device is implied if no tag/finder is supplied (no need for explicit this). Lambdas are supported, and the memory space and offset are optional. These kinds of things work: * .read_cb().set([this] () { return something; }); * .read_cb().set([this] (offs_t offset) { return ~offset; }); * .write_cb().set([this] (offs_t offset, u8 data) { m_array[offset] = data; }); * .write_cb().set([this] (int state) { some_var = state; }); Arbitrary transforms are allowed, and they can modify offset/mask for example: * .read_cb().set(FUNC(my_state::handler)).transform([] (u8 data) { return bitswap<4>(data, 1, 3, 0, 2); }); * .read_cb().set(m_dev, FUNC(some_device::member)).transform([] (offs_t &offset, u8 data) { offset ^= 3; return data; }); It's possible to stack arbitrary transforms, at the cost of compile time (the whole transform stack gets inlined at compile time). Shifts count as an arbitrary transform, but mask/exor does not. Order of mask/shift/exor now matters. Modifications are applied in the specified order. These are NOT EQUIVALENT: * .read_cb().set(FUNC(my_state::handler)).mask(0x06).lshift(2); * .read_cb().set(FUNC(my_state::handler)).lshift(2).mask(0x06); The bit helper no longer reverses its behaviour for read callbacks, and I/O ports are no longer aware of the field mask. Binding a read callback to no-op is not supported - specify a constant. The GND and VCC aliases have been removed intentionally - they're TTL-centric, and were already being abused. Other quirks have been preserved, including write logger only logging when the data is non-zero (quite unhelpful in many of the cases where it's used). Legacy syntax is still supported for simple cases, but will be phased out. New devices should not have MCFG_ macros. I don't think I've missed any fundamental issues, but if I've broken something, let me know.
Diffstat (limited to 'src/mame/drivers/microterm.cpp')
-rw-r--r--src/mame/drivers/microterm.cpp37
1 files changed, 17 insertions, 20 deletions
diff --git a/src/mame/drivers/microterm.cpp b/src/mame/drivers/microterm.cpp
index 8c12b71b689..d8e00c718d5 100644
--- a/src/mame/drivers/microterm.cpp
+++ b/src/mame/drivers/microterm.cpp
@@ -99,16 +99,15 @@ MACHINE_CONFIG_START(microterm_state::mt420)
MCFG_DEVICE_PROGRAM_MAP(mt420_mem_map)
MCFG_DEVICE_IO_MAP(mt420_io_map)
- MCFG_DEVICE_ADD("duart", SCN2681, XTAL(3'686'400)) // MC2681
- MCFG_MC68681_IRQ_CALLBACK(INPUTLINE("maincpu", 0))
- MCFG_MC68681_OUTPORT_CALLBACK(WRITELINE("eeprom", eeprom_serial_93cxx_device, di_write)) MCFG_DEVCB_BIT(5)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom", eeprom_serial_93cxx_device, cs_write)) MCFG_DEVCB_BIT(4)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom", eeprom_serial_93cxx_device, clk_write)) MCFG_DEVCB_BIT(3)
+ scn2681_device &duart(SCN2681(config, "duart", XTAL(3'686'400))); // MC2681
+ duart.irq_cb().set_inputline(m_maincpu, 0);
+ duart.outport_cb().set("eeprom", FUNC(eeprom_serial_93cxx_device::di_write)).bit(5);
+ duart.outport_cb().append("eeprom", FUNC(eeprom_serial_93cxx_device::cs_write)).bit(4);
+ duart.outport_cb().append("eeprom", FUNC(eeprom_serial_93cxx_device::clk_write)).bit(3);
- MCFG_DEVICE_ADD("aci", MC2661, XTAL(3'686'400)) // SCN2641
+ MC2661(config, "aci", XTAL(3'686'400)); // SCN2641
- MCFG_DEVICE_ADD("eeprom", EEPROM_SERIAL_93C46_16BIT)
- MCFG_EEPROM_SERIAL_DO_CALLBACK(WRITELINE("duart", scn2681_device, ip6_w))
+ EEPROM_SERIAL_93C46_16BIT(config, "eeprom").do_callback().set("duart", FUNC(scn2681_device::ip6_w));
MCFG_SCREEN_ADD("screen", RASTER)
MCFG_SCREEN_RAW_PARAMS(XTAL(9'877'680), 612, 0, 480, 269, 0, 250)
@@ -128,20 +127,18 @@ MACHINE_CONFIG_START(microterm_state::mt5510)
MCFG_DEVICE_PROGRAM_MAP(mt5510_mem_map)
MCFG_DEVICE_IO_MAP(mt5510_io_map)
- MCFG_DEVICE_ADD("duart", SCN2681, XTAL(3'686'400))
- MCFG_MC68681_IRQ_CALLBACK(INPUTLINE("maincpu", 0))
- MCFG_MC68681_OUTPORT_CALLBACK(WRITELINE("eeprom1", eeprom_serial_93cxx_device, di_write)) MCFG_DEVCB_BIT(6)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom2", eeprom_serial_93cxx_device, di_write)) MCFG_DEVCB_BIT(5)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom1", eeprom_serial_93cxx_device, cs_write)) MCFG_DEVCB_BIT(4)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom2", eeprom_serial_93cxx_device, cs_write)) MCFG_DEVCB_BIT(4)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom1", eeprom_serial_93cxx_device, clk_write)) MCFG_DEVCB_BIT(3)
- MCFG_DEVCB_CHAIN_OUTPUT(WRITELINE("eeprom2", eeprom_serial_93cxx_device, clk_write)) MCFG_DEVCB_BIT(3)
+ scn2681_device &duart(SCN2681(config, "duart", XTAL(3'686'400)));
+ duart.irq_cb().set_inputline(m_maincpu, 0);
+ duart.outport_cb().set("eeprom1", FUNC(eeprom_serial_93cxx_device::di_write)).bit(6);
+ duart.outport_cb().append("eeprom2", FUNC(eeprom_serial_93cxx_device::di_write)).bit(5);
+ duart.outport_cb().append("eeprom1", FUNC(eeprom_serial_93cxx_device::cs_write)).bit(4);
+ duart.outport_cb().append("eeprom2", FUNC(eeprom_serial_93cxx_device::cs_write)).bit(4);
+ duart.outport_cb().append("eeprom1", FUNC(eeprom_serial_93cxx_device::clk_write)).bit(3);
+ duart.outport_cb().append("eeprom2", FUNC(eeprom_serial_93cxx_device::clk_write)).bit(3);
- MCFG_DEVICE_ADD("eeprom1", EEPROM_SERIAL_93C46_16BIT)
- MCFG_EEPROM_SERIAL_DO_CALLBACK(WRITELINE("duart", scn2681_device, ip6_w))
+ EEPROM_SERIAL_93C46_16BIT(config, "eeprom1").do_callback().set("duart", FUNC(scn2681_device::ip6_w));
- MCFG_DEVICE_ADD("eeprom2", EEPROM_SERIAL_93C46_16BIT)
- MCFG_EEPROM_SERIAL_DO_CALLBACK(WRITELINE("duart", scn2681_device, ip5_w))
+ EEPROM_SERIAL_93C46_16BIT(config, "eeprom2").do_callback().set("duart", FUNC(scn2681_device::ip5_w));
MCFG_SCREEN_ADD("screen", RASTER)
MCFG_SCREEN_RAW_PARAMS(XTAL(45'830'400) / 2, 1120, 0, 960, 341, 0, 300) // wild guess at resolution