summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/imagedev/cassette.c
diff options
context:
space:
mode:
author Dirk Best <mail@dirk-best.de>2015-06-09 16:57:51 +0200
committer Dirk Best <mail@dirk-best.de>2015-06-09 17:01:07 +0200
commitbb8ef78d03e10b0983dcca40fafa1b8607c5a61c (patch)
tree0f7d1eb6d6efd1e75829634904bad88d375b98d3 /src/emu/imagedev/cassette.c
parent7ff62b4b455e08a797709abe9c9444bf9858c64b (diff)
i86: add very limited lock support (just enough for the apricot
actually)
Diffstat (limited to 'src/emu/imagedev/cassette.c')
0 files changed, 0 insertions, 0 deletions
87 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
// license:BSD-3-Clause
// copyright-holders:Aaron Giles, Paul Priest
/***************************************************************************

    validity.cpp

    Validity checks on internal data structures.

***************************************************************************/

#include "emu.h"
#include "validity.h"

#include "emuopts.h"
#include "romload.h"
#include "video/rgbutil.h"
#include "unicode.h"

#include <cctype>
#include <type_traits>
#include <typeinfo>


//**************************************************************************
//  TYPE DEFINITIONS
//**************************************************************************

//**************************************************************************
//  INLINE FUNCTIONS
//**************************************************************************

//-------------------------------------------------
//  ioport_string_from_index - return an indexed
//  string from the I/O port system
//-------------------------------------------------

inline const char *validity_checker::ioport_string_from_index(u32 index)
{
	return ioport_configurer::string_from_token((const char *)(uintptr_t)index);
}


//-------------------------------------------------
//  get_defstr_index - return the index of the
//  string assuming it is one of the default
//  strings
//-------------------------------------------------

inline int validity_checker::get_defstr_index(const char *string, bool suppress_error)
{
	// check for strings that should be DEF_STR
	auto strindex = m_defstr_map.find(string);
	if (!suppress_error && strindex != m_defstr_map.end() && string != ioport_string_from_index(strindex->second))
		osd_printf_error("Must use DEF_STR( %s )\n", string);
	return (strindex != m_defstr_map.end()) ? strindex->second : 0;
}


//-------------------------------------------------
//  random_u64
//  random_s64
//  random_u32
//  random_s32
//-------------------------------------------------
#undef rand
inline s32 validity_checker::random_i32() { return s32(random_u32()); }
inline u32 validity_checker::random_u32() { return rand() ^ (rand() << 15); }
inline s64 validity_checker::random_i64() { return s64(random_u64()); }
inline u64 validity_checker::random_u64() { return u64(random_u32()) ^ (u64(random_u32()) << 30); }



//-------------------------------------------------
//  validate_tag - ensure that the given tag
//  meets the general requirements
//-------------------------------------------------

void validity_checker::validate_tag(const char *tag)
{
	// some common names that are now deprecated
	if (strcmp(tag, "main") == 0 || strcmp(tag, "audio") == 0 || strcmp(tag, "sound") == 0 || strcmp(tag, "left") == 0 || strcmp(tag, "right") == 0)
		osd_printf_error("Invalid generic tag '%s' used\n", tag);

	// scan for invalid characters
	static char const *const validchars = "abcdefghijklmnopqrstuvwxyz0123456789_.:^$";
	for (char const *p = tag; *p; ++p)
	{
		// only lower-case permitted
		if (*p != tolower(u8(*p)))
		{
			osd_printf_error("Tag '%s' contains upper-case characters\n", tag);
			break;
		}
		if (*p == ' ')
		{
			osd_printf_error("Tag '%s' contains spaces\n", tag);
			break;
		}
		if (!strchr(validchars, *p))
		{
			osd_printf_error("Tag '%s' contains invalid character '%c'\n",  tag, *p);
			break;
		}
	}

	// find the start of the final tag
	const char *begin = strrchr(tag, ':');
	if (begin == nullptr)
		begin = tag;
	else
		begin += 1;

	// 0-length = bad
	if (*begin == 0)
		osd_printf_error("Found 0-length tag\n");

	// too short/too long = bad
	if (strlen(begin) < MIN_TAG_LENGTH)
		osd_printf_error("Tag '%s' is too short (must be at least %d characters)\n", tag, MIN_TAG_LENGTH);
}



//**************************************************************************
//  VALIDATION FUNCTIONS
//**************************************************************************

//-------------------------------------------------
//  validity_checker - constructor
//-------------------------------------------------

validity_checker::validity_checker(emu_options &options, bool quick)
	: m_drivlist(options)
	, m_errors(0)
	, m_warnings(0)
	, m_print_verbose(options.verbose())
	, m_current_driver(nullptr)
	, m_current_device(nullptr)
	, m_current_ioport(nullptr)
	, m_checking_card(false)
	, m_quick(quick)
{
	// pre-populate the defstr map with all the default strings
	for (int strnum = 1; strnum < INPUT_STRING_COUNT; strnum++)
	{
		const char *string = ioport_string_from_index(strnum);
		if (string != nullptr)
			m_defstr_map.insert(std::make_pair(string, strnum));
	}
}

//-------------------------------------------------
//  validity_checker - destructor
//-------------------------------------------------

validity_checker::~validity_checker()
{
	validate_end();
}

//-------------------------------------------------
//  check_driver - check a single driver
//-------------------------------------------------

void validity_checker::check_driver(const game_driver &driver)
{
	// simply validate the one driver
	validate_begin();
	validate_one(driver);
	validate_end();
}


//-------------------------------------------------
//  check_shared_source - check all drivers that
//  share the same source file as the given driver
//-------------------------------------------------

void validity_checker::check_shared_source(const game_driver &driver)
{
	// initialize
	validate_begin();

	// then iterate over all drivers and check the ones that share the same source file
	m_drivlist.reset();
	while (m_drivlist.next())
		if (strcmp(driver.type.source(), m_drivlist.driver().type.source()) == 0)
			validate_one(m_drivlist.driver());

	// cleanup
	validate_end();
}


//-------------------------------------------------
//  check_all_matching - check all drivers whose
//  names match the given string
//-------------------------------------------------

bool validity_checker::check_all_matching(const char *string)
{
	// start by checking core stuff
	validate_begin();
	validate_core();
	validate_inlines();
	validate_rgb();

	// if we had warnings or errors, output
	if (m_errors > 0 || m_warnings > 0 || !m_verbose_text.empty())
	{
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Core: %d errors, %d warnings\n", m_errors, m_warnings);
		if (m_errors > 0)
			output_indented_errors(m_error_text, "Errors");
		if (m_warnings > 0)
			output_indented_errors(m_warning_text, "Warnings");
		if (!m_verbose_text.empty())
			output_indented_errors(m_verbose_text, "Messages");
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "\n");
	}

	// then iterate over all drivers and check them
	m_drivlist.reset();
	bool validated_any = false;
	while (m_drivlist.next())
	{
		if (driver_list::matches(string, m_drivlist.driver().name))
		{
			validate_one(m_drivlist.driver());
			validated_any = true;
		}
	}

	// validate devices
	if (!string)
		validate_device_types();

	// cleanup
	validate_end();

	// if we failed to match anything, it
	if (string && !validated_any)
		throw emu_fatalerror(EMU_ERR_NO_SUCH_SYSTEM, "No matching systems found for '%s'", string);

	return !(m_errors > 0 || m_warnings > 0);
}


//-------------------------------------------------
//  validate_begin - prepare for validation by
//  taking over the output callbacks and resetting
//  our internal state
//-------------------------------------------------

void validity_checker::validate_begin()
{
	// take over error and warning outputs
	osd_output::push(this);

	// reset all our maps
	m_names_map.clear();
	m_descriptions_map.clear();
	m_roms_map.clear();
	m_defstr_map.clear();
	m_region_map.clear();
	m_ioport_set.clear();

	// reset internal state
	m_errors = 0;
	m_warnings = 0;
	m_already_checked.clear();
}


//-------------------------------------------------
//  validate_end - restore output callbacks and
//  clean up
//-------------------------------------------------

void validity_checker::validate_end()
{
	// restore the original output callbacks
	osd_output::pop(this);
}


//-------------------------------------------------
//  validate_drivers - master validity checker
//-------------------------------------------------

void validity_checker::validate_one(const game_driver &driver)
{
	// help verbose validation detect configuration-related crashes
	if (m_print_verbose)
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Validating driver %s (%s)...\n", driver.name, core_filename_extract_base(driver.type.source()).c_str());

	// set the current driver
	m_current_driver = &driver;
	m_current_device = nullptr;
	m_current_ioport = nullptr;
	m_region_map.clear();
	m_ioport_set.clear();
	m_checking_card = false;

	// reset error/warning state
	int start_errors = m_errors;
	int start_warnings = m_warnings;
	m_error_text.clear();
	m_warning_text.clear();
	m_verbose_text.clear();

	// wrap in try/catch to catch fatalerrors
	try
	{
		machine_config config(driver, m_blank_options);
		validate_driver(config.root_device());
		validate_roms(config.root_device());
		validate_inputs(config.root_device());
		validate_devices(config);
	}
	catch (emu_fatalerror const &err)
	{
		osd_printf_error("Fatal error %s", err.what());
	}

	// if we had warnings or errors, output
	if (m_errors > start_errors || m_warnings > start_warnings || !m_verbose_text.empty())
	{
		if (!m_print_verbose)
			output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Driver %s (file %s): ", driver.name, core_filename_extract_base(driver.type.source()).c_str());
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "%d errors, %d warnings\n", m_errors - start_errors, m_warnings - start_warnings);
		if (m_errors > start_errors)
			output_indented_errors(m_error_text, "Errors");
		if (m_warnings > start_warnings)
			output_indented_errors(m_warning_text, "Warnings");
		if (!m_verbose_text.empty())
			output_indented_errors(m_verbose_text, "Messages");
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "\n");
	}

	// reset the driver/device
	m_current_driver = nullptr;
	m_current_device = nullptr;
	m_current_ioport = nullptr;
	m_region_map.clear();
	m_ioport_set.clear();
	m_checking_card = false;
}


//-------------------------------------------------
//  validate_core - validate core internal systems
//-------------------------------------------------

void validity_checker::validate_core()
{
	// basic system checks
	if (~0 != -1) osd_printf_error("Machine must be two's complement\n");

	u8 a = 0xff;
	u8 b = a + 1;
	if (b > a) osd_printf_error("u8 must be 8 bits\n");

	// check size of core integer types
	if (sizeof(s8)  != 1) osd_printf_error("s8 must be 8 bits\n");
	if (sizeof(u8)  != 1) osd_printf_error("u8 must be 8 bits\n");
	if (sizeof(s16) != 2) osd_printf_error("s16 must be 16 bits\n");
	if (sizeof(u16) != 2) osd_printf_error("u16 must be 16 bits\n");
	if (sizeof(s32) != 4) osd_printf_error("s32 must be 32 bits\n");
	if (sizeof(u32) != 4) osd_printf_error("u32 must be 32 bits\n");
	if (sizeof(s64) != 8) osd_printf_error("s64 must be 64 bits\n");
	if (sizeof(u64) != 8) osd_printf_error("u64 must be 64 bits\n");

	// check signed right shift
	s8  a8 = -3;
	s16 a16 = -3;
	s32 a32 = -3;
	s64 a64 = -3;
	if (a8  >> 1 != -2) osd_printf_error("s8 right shift must be arithmetic\n");
	if (a16 >> 1 != -2) osd_printf_error("s16 right shift must be arithmetic\n");
	if (a32 >> 1 != -2) osd_printf_error("s32 right shift must be arithmetic\n");
	if (a64 >> 1 != -2) osd_printf_error("s64 right shift must be arithmetic\n");

	// check pointer size
#ifdef PTR64
	static_assert(sizeof(void *) == 8, "PTR64 flag enabled, but was compiled for 32-bit target\n");
#else
	static_assert(sizeof(void *) == 4, "PTR64 flag not enabled, but was compiled for 64-bit target\n");
#endif

	// TODO: check if this is actually working
	// check endianness definition
	u16 lsbtest = 0;
	*(u8 *)&lsbtest = 0xff;
#ifdef LSB_FIRST
	if (lsbtest == 0xff00) osd_printf_error("LSB_FIRST specified, but running on a big-endian machine\n");
#else
	if (lsbtest == 0x00ff) osd_printf_error("LSB_FIRST not specified, but running on a little-endian machine\n");
#endif
}


//-------------------------------------------------
//  validate_inlines - validate inline function
//  behaviors
//-------------------------------------------------

void validity_checker::validate_inlines()
{
	volatile u64 testu64a = random_u64();
	volatile s64 testi64a = random_i64();
	volatile u32 testu32a = random_u32();
	volatile u32 testu32b = random_u32();
	volatile s32 testi32a = random_i32();
	volatile s32 testi32b = random_i32();
	s32 resulti32, expectedi32;
	u32 resultu32, expectedu32;
	s64 resulti64, expectedi64;
	u64 resultu64, expectedu64;
	s32 remainder, expremainder;
	u32 uremainder, expuremainder, bigu32 = 0xffffffff;

	// use only non-zero, positive numbers
	if (testu64a == 0) testu64a++;
	if (testi64a == 0) testi64a++;
	else if (testi64a < 0) testi64a = -testi64a;
	if (testu32a == 0) testu32a++;
	if (testu32b == 0) testu32b++;
	if (testi32a == 0) testi32a++;
	else if (testi32a < 0) testi32a = -testi32a;
	if (testi32b == 0) testi32b++;
	else if (testi32b < 0) testi32b = -testi32b;

	resulti64 = mul_32x32(testi32a, testi32b);
	expectedi64 = s64(testi32a) * s64(testi32b);
	if (resulti64 != expectedi64)
		osd_printf_error("Error testing mul_32x32 (%08X x %08X) = %16X (expected %16X)\n", s32(testi32a), s32(testi32b), resulti64, expectedi64);

	resultu64 = mulu_32x32(testu32a, testu32b);
	expectedu64 = u64(testu32a) * u64(testu32b);
	if (resultu64 != expectedu64)
		osd_printf_error("Error testing mulu_32x32 (%08X x %08X) = %16X (expected %16X)\n", u32(testu32a), u32(testu32b), resultu64, expectedu64);

	resulti32 = mul_32x32_hi(testi32a, testi32b);
	expectedi32 = (s64(testi32a) * s64(testi32b)) >> 32;
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing mul_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", s32(testi32a), s32(testi32b), resulti32, expectedi32);

	resultu32 = mulu_32x32_hi(testu32a, testu32b);
	expectedu32 = (s64(testu32a) * s64(testu32b)) >> 32;
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing mulu_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", u32(testu32a), u32(testu32b), resultu32, expectedu32);

	resulti32 = mul_32x32_shift(testi32a, testi32b, 7);
	expectedi32 = (s64(testi32a) * s64(testi32b)) >> 7;
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing mul_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", s32(testi32a), s32(testi32b), resulti32, expectedi32);

	resultu32 = mulu_32x32_shift(testu32a, testu32b, 7);
	expectedu32 = (s64(testu32a) * s64(testu32b)) >> 7;
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing mulu_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", u32(testu32a), u32(testu32b), resultu32, expectedu32);

	while (s64(testi32a) * s64(0x7fffffff) < testi64a)
		testi64a /= 2;
	while (u64(testu32a) * u64(bigu32) < testu64a)
		testu64a /= 2;

	resulti32 = div_64x32(testi64a, testi32a);
	expectedi32 = testi64a / s64(testi32a);
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing div_64x32 (%16X / %08X) = %08X (expected %08X)\n", s64(testi64a), s32(testi32a), resulti32, expectedi32);

	resultu32 = divu_64x32(testu64a, testu32a);
	expectedu32 = testu64a / u64(testu32a);
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing divu_64x32 (%16X / %08X) = %08X (expected %08X)\n", u64(testu64a), u32(testu32a), resultu32, expectedu32);

	resulti32 = div_64x32_rem(testi64a, testi32a, &remainder);
	expectedi32 = testi64a / s64(testi32a);
	expremainder = testi64a % s64(testi32a);
	if (resulti32 != expectedi32 || remainder != expremainder)
		osd_printf_error("Error testing div_64x32_rem (%16X / %08X) = %08X,%08X (expected %08X,%08X)\n", s64(testi64a), s32(testi32a), resulti32, remainder, expectedi32, expremainder);

	resultu32 = divu_64x32_rem(testu64a, testu32a, &uremainder);
	expectedu32 = testu64a / u64(testu32a);
	expuremainder = testu64a % u64(testu32a);
	if (resultu32 != expectedu32 || uremainder != expuremainder)
		osd_printf_error("Error testing divu_64x32_rem (%16X / %08X) = %08X,%08X (expected %08X,%08X)\n", u64(testu64a), u32(testu32a), resultu32, uremainder, expectedu32, expuremainder);

	resulti32 = mod_64x32(testi64a, testi32a);
	expectedi32 = testi64a % s64(testi32a);
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing mod_64x32 (%16X / %08X) = %08X (expected %08X)\n", s64(testi64a), s32(testi32a), resulti32, expectedi32);

	resultu32 = modu_64x32(testu64a, testu32a);
	expectedu32 = testu64a % u64(testu32a);
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing modu_64x32 (%16X / %08X) = %08X (expected %08X)\n", u64(testu64a), u32(testu32a), resultu32, expectedu32);

	while (s64(testi32a) * s64(0x7fffffff) < (s32(testi64a) << 3))
		testi64a /= 2;
	while (u64(testu32a) * u64(0xffffffff) < (u32(testu64a) << 3))
		testu64a /= 2;

	resulti32 = div_32x32_shift(s32(testi64a), testi32a, 3);
	expectedi32 = (s64(s32(testi64a)) << 3) / s64(testi32a);
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing div_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", s32(testi64a), s32(testi32a), resulti32, expectedi32);

	resultu32 = divu_32x32_shift(u32(testu64a), testu32a, 3);
	expectedu32 = (u64(u32(testu64a)) << 3) / u64(testu32a);
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing divu_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", u32(testu64a), u32(testu32a), resultu32, expectedu32);

	if (fabsf(recip_approx(100.0f) - 0.01f) > 0.0001f)
		osd_printf_error("Error testing recip_approx\n");

	for (int i = 0; i <= 32; i++)
	{
		u32 t = i < 32 ? (1 << (31 - i) | testu32a >> i) : 0;
		u8 resultu8 = count_leading_zeros(t);
		if (resultu8 != i)
			osd_printf_error("Error testing count_leading_zeros %08x=%02x (expected %02x)\n", t, resultu8, i);

		t ^= 0xffffffff;
		resultu8 = count_leading_ones(t);
		if (resultu8 != i)
			osd_printf_error("Error testing count_leading_ones %08x=%02x (expected %02x)\n", t, resultu8, i);
	}
}


//-------------------------------------------------
//  validate_rgb - validate optimised RGB utility
//  class
//-------------------------------------------------

void validity_checker::validate_rgb()
{
	/*
	    This performs cursory tests of most of the vector-optimised RGB
	    utilities, concentrating on the low-level maths.  It uses random
	    values most of the time for a quick go/no-go indication rather
	    than trying to exercise edge cases.  It doesn't matter too much
	    if the compiler optimises out some of the operations since it's
	    really intended to check for logic bugs in the vector code.  If
	    the compiler can work out that the code produces the expected
	    result, that's good enough.

	    The tests for bitwise logical operations are ordered to minimise
	    the chance of all-zero or all-one patterns producing a
	    misleading good result.

	    The following functions are not tested yet:
	    rgbaint_t()
	    clamp_and_clear(const u32)
	    sign_extend(const u32, const u32)
	    min(const s32)
	    max(const s32)
	    blend(const rgbaint_t&, u8)
	    scale_and_clamp(const rgbaint_t&)
	    scale_imm_and_clamp(const s32)
	    scale2_add_and_clamp(const rgbaint_t&, const rgbaint_t&, const rgbaint_t&)
	    scale_add_and_clamp(const rgbaint_t&, const rgbaint_t&);
	    scale_imm_add_and_clamp(const s32, const rgbaint_t&);
	*/

	auto random_i32_nolimit = [this]
	{
		s32 result;
		do { result = random_i32(); } while ((result == std::numeric_limits<s32>::min()) || (result == std::numeric_limits<s32>::max()));
		return result;
	};

	volatile s32 expected_a, expected_r, expected_g, expected_b;
	volatile s32 actual_a, actual_r, actual_g, actual_b;
	volatile s32 imm;
	rgbaint_t rgb, other;
	rgb_t packed;
	auto check_expected = [&] (const char *desc)
	{
		const volatile s32 a = rgb.get_a32();
		const volatile s32 r = rgb.get_r32();
		const volatile s32 g = rgb.get_g32();
		const volatile s32 b = rgb.get_b32();
		if (a != expected_a) osd_printf_error("Error testing %s get_a32() = %d (expected %d)\n", desc, s32(a), s32(expected_a));
		if (r != expected_r) osd_printf_error("Error testing %s get_r32() = %d (expected %d)\n", desc, s32(r), s32(expected_r));
		if (g != expected_g) osd_printf_error("Error testing %s get_g32() = %d (expected %d)\n", desc, s32(g), s32(expected_g));
		if (b != expected_b) osd_printf_error("Error testing %s get_b32() = %d (expected %d)\n", desc, s32(b), s32(expected_b));
	};

	// check set/get
	expected_a = random_i32();
	expected_r = random_i32();
	expected_g = random_i32();
	expected_b = random_i32();
	rgb.set(expected_a, expected_r, expected_g, expected_b);
	check_expected("rgbaint_t::set(a, r, g, b)");

	// check construct/set
	expected_a = random_i32();
	expected_r = random_i32();
	expected_g = random_i32();
	expected_b = random_i32();
	rgb.set(rgbaint_t(expected_a, expected_r, expected_g, expected_b));
	check_expected("rgbaint_t::set(rgbaint_t)");

	packed = random_i32();
	expected_a = packed.a();
	expected_r = packed.r();
	expected_g = packed.g();
	expected_b = packed.b();
	rgb.set(packed);
	check_expected("rgbaint_t::set(const rgb_t& rgb)");

	// check construct/assign
	expected_a = random_i32();
	expected_r = random_i32();
	expected_g = random_i32();
	expected_b = random_i32();
	rgb = rgbaint_t(expected_a, expected_r, expected_g, expected_b);
	check_expected("rgbaint_t assignment");

	// check piecewise set
	rgb.set_a(expected_a = random_i32());
	check_expected("rgbaint_t::set_a");
	rgb.set_r(expected_r = random_i32());
	check_expected("rgbaint_t::set_r");
	rgb.set_g(expected_g = random_i32());
	check_expected("rgbaint_t::set_g");
	rgb.set_b(expected_b = random_i32());
	check_expected("rgbaint_t::set_b");

	// test merge_alpha
	expected_a = rand();
	rgb.merge_alpha(rgbaint_t(expected_a, rand(), rand(), rand()));
	check_expected("rgbaint_t::merge_alpha");

	// test RGB addition (method)
	expected_a += actual_a = random_i32();
	expected_r += actual_r = random_i32();
	expected_g += actual_g = random_i32();
	expected_b += actual_b = random_i32();
	rgb.add(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::add");

	// test RGB addition (operator)
	expected_a += actual_a = random_i32();
	expected_r += actual_r = random_i32();
	expected_g += actual_g = random_i32();
	expected_b += actual_b = random_i32();
	rgb += rgbaint_t(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::operator+=");

	// test offset addition (method)
	imm = random_i32();
	expected_a += imm;
	expected_r += imm;
	expected_g += imm;
	expected_b += imm;
	rgb.add_imm(imm);
	check_expected("rgbaint_t::add_imm");

	// test offset addition (operator)
	imm = random_i32();
	expected_a += imm;
	expected_r += imm;
	expected_g += imm;
	expected_b += imm;
	rgb += imm;
	check_expected("rgbaint_t::operator+=");

	// test immediate RGB addition
	expected_a += actual_a = random_i32();
	expected_r += actual_r = random_i32();
	expected_g += actual_g = random_i32();
	expected_b += actual_b = random_i32();
	rgb.add_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::add_imm_rgba");

	// test RGB subtraction (method)
	expected_a -= actual_a = random_i32();
	expected_r -= actual_r = random_i32();
	expected_g -= actual_g = random_i32();
	expected_b -= actual_b = random_i32();
	rgb.sub(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::sub");

	// test RGB subtraction (operator)
	expected_a -= actual_a = random_i32();
	expected_r -= actual_r = random_i32();
	expected_g -= actual_g = random_i32();
	expected_b -= actual_b = random_i32();
	rgb -= rgbaint_t(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::operator-=");

	// test offset subtraction
	imm = random_i32();
	expected_a -= imm;
	expected_r -= imm;
	expected_g -= imm;
	expected_b -= imm;
	rgb.sub_imm(imm);
	check_expected("rgbaint_t::sub_imm");

	// test immediate RGB subtraction
	expected_a -= actual_a = random_i32();
	expected_r -= actual_r = random_i32();
	expected_g -= actual_g = random_i32();
	expected_b -= actual_b = random_i32();
	rgb.sub_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::sub_imm_rgba");

	// test reversed RGB subtraction
	expected_a = (actual_a = random_i32()) - expected_a;
	expected_r = (actual_r = random_i32()) - expected_r;
	expected_g = (actual_g = random_i32()) - expected_g;
	expected_b = (actual_b = random_i32()) - expected_b;
	rgb.subr(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::subr");

	// test reversed offset subtraction
	imm = random_i32();
	expected_a = imm - expected_a;
	expected_r = imm - expected_r;
	expected_g = imm - expected_g;
	expected_b = imm - expected_b;
	rgb.subr_imm(imm);
	check_expected("rgbaint_t::subr_imm");

	// test reversed immediate RGB subtraction
	expected_a = (actual_a = random_i32()) - expected_a;
	expected_r = (actual_r = random_i32()) - expected_r;
	expected_g = (actual_g = random_i32()) - expected_g;
	expected_b = (actual_b = random_i32()) - expected_b;
	rgb.subr_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::subr_imm_rgba");

	// test RGB multiplication (method)
	expected_a *= actual_a = random_i32();
	expected_r *= actual_r = random_i32();
	expected_g *= actual_g = random_i32();
	expected_b *= actual_b = random_i32();
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::mul");

	// test RGB multiplication (operator)
	expected_a *= actual_a = random_i32();
	expected_r *= actual_r = random_i32();
	expected_g *= actual_g = random_i32();
	expected_b *= actual_b = random_i32();
	rgb *= rgbaint_t(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::operator*=");

	// test factor multiplication (method)
	imm = random_i32();
	expected_a *= imm;
	expected_r *= imm;
	expected_g *= imm;
	expected_b *= imm;
	rgb.mul_imm(imm);
	check_expected("rgbaint_t::mul_imm");

	// test factor multiplication (operator)
	imm = random_i32();
	expected_a *= imm;
	expected_r *= imm;
	expected_g *= imm;
	expected_b *= imm;
	rgb *= imm;
	check_expected("rgbaint_t::operator*=");

	// test immediate RGB multiplication
	expected_a *= actual_a = random_i32();
	expected_r *= actual_r = random_i32();
	expected_g *= actual_g = random_i32();
	expected_b *= actual_b = random_i32();
	rgb.mul_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::mul_imm_rgba");

	// test select alpha element multiplication
	expected_a *= actual_a = random_i32();
	expected_r *= actual_a;
	expected_g *= actual_a;
	expected_b *= actual_a;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_alpha32());
	check_expected("rgbaint_t::mul(select_alpha32)");

	// test select red element multiplication
	expected_a *= actual_r = random_i32();
	expected_r *= actual_r;
	expected_g *= actual_r;
	expected_b *= actual_r;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_red32());
	check_expected("rgbaint_t::mul(select_red32)");

	// test select green element multiplication
	expected_a *= actual_g = random_i32();
	expected_r *= actual_g;
	expected_g *= actual_g;
	expected_b *= actual_g;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_green32());
	check_expected("rgbaint_t::mul(select_green32)");

	// test select blue element multiplication
	expected_a *= actual_b = random_i32();
	expected_r *= actual_b;
	expected_g *= actual_b;
	expected_b *= actual_b;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_blue32());
	check_expected("rgbaint_t::mul(select_blue32)");

	// test RGB and not
	expected_a &= ~(actual_a = random_i32());
	expected_r &= ~(actual_r = random_i32());
	expected_g &= ~(actual_g = random_i32());
	expected_b &= ~(actual_b = random_i32());
	rgb.andnot_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::andnot_reg");

	// test RGB or
	expected_a |= actual_a = random_i32();
	expected_r |= actual_r = random_i32();
	expected_g |= actual_g = random_i32();
	expected_b |= actual_b = random_i32();
	rgb.or_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::or_reg");

	// test RGB and
	expected_a &= actual_a = random_i32();
	expected_r &= actual_r = random_i32();
	expected_g &= actual_g = random_i32();
	expected_b &= actual_b = random_i32();
	rgb.and_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::and_reg");

	// test RGB xor
	expected_a ^= actual_a = random_i32();
	expected_r ^= actual_r = random_i32();
	expected_g ^= actual_g = random_i32();
	expected_b ^= actual_b = random_i32();
	rgb.xor_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::xor_reg");

	// test uniform or
	imm = random_i32();
	expected_a |= imm;
	expected_r |= imm;
	expected_g |= imm;
	expected_b |= imm;
	rgb.or_imm(imm);
	check_expected("rgbaint_t::or_imm");

	// test uniform and
	imm = random_i32();
	expected_a &= imm;
	expected_r &= imm;
	expected_g &= imm;
	expected_b &= imm;
	rgb.and_imm(imm);
	check_expected("rgbaint_t::and_imm");

	// test uniform xor
	imm = random_i32();
	expected_a ^= imm;
	expected_r ^= imm;
	expected_g ^= imm;
	expected_b ^= imm;
	rgb.xor_imm(imm);
	check_expected("rgbaint_t::xor_imm");

	// test immediate RGB or
	expected_a |= actual_a = random_i32();
	expected_r |= actual_r = random_i32();
	expected_g |= actual_g = random_i32();
	expected_b |= actual_b = random_i32();
	rgb.or_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::or_imm_rgba");

	// test immediate RGB and
	expected_a &= actual_a = random_i32();
	expected_r &= actual_r = random_i32();
	expected_g &= actual_g = random_i32();
	expected_b &= actual_b = random_i32();
	rgb.and_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::and_imm_rgba");

	// test immediate RGB xor
	expected_a ^= actual_a = random_i32();
	expected_r ^= actual_r = random_i32();
	expected_g ^= actual_g = random_i32();
	expected_b ^= actual_b = random_i32();
	rgb.xor_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::xor_imm_rgba");

	// test 8-bit get
	expected_a = s32(u32(expected_a) & 0x00ff);
	expected_r = s32(u32(expected_r) & 0x00ff);
	expected_g = s32(u32(expected_g) & 0x00ff);
	expected_b = s32(u32(expected_b) & 0x00ff);
	actual_a = s32(u32(rgb.get_a()));
	actual_r = s32(u32(rgb.get_r()));
	actual_g = s32(u32(rgb.get_g()));
	actual_b = s32(u32(rgb.get_b()));
	if (actual_a != expected_a) osd_printf_error("Error testing rgbaint_t::get_a() = %d (expected %d)\n", s32(actual_a), s32(expected_a));
	if (actual_r != expected_r) osd_printf_error("Error testing rgbaint_t::get_r() = %d (expected %d)\n", s32(actual_r), s32(expected_r));
	if (actual_g != expected_g) osd_printf_error("Error testing rgbaint_t::get_g() = %d (expected %d)\n", s32(actual_g), s32(expected_g));
	if (actual_b != expected_b) osd_printf_error("Error testing rgbaint_t::get_b() = %d (expected %d)\n", s32(actual_b), s32(expected_b));

	// test set from packed RGBA
	imm = random_i32();
	expected_a = s32((u32(imm) >> 24) & 0x00ff);
	expected_r = s32((u32(imm) >> 16) & 0x00ff);
	expected_g = s32((u32(imm) >> 8) & 0x00ff);
	expected_b = s32((u32(imm) >> 0) & 0x00ff);
	rgb.set(u32(imm));
	check_expected("rgbaint_t::set(u32)");

	// while we have a value loaded that we know doesn't exceed 8-bit range, check the non-clamping convert-to-rgba
	packed = rgb.to_rgba();
	if (u32(imm) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba() = %08x (expected %08x)\n", u32(packed), u32(imm));

	// test construct from packed RGBA and assign
	imm = random_i32();
	expected_a = s32((u32(imm) >> 24) & 0x00ff);
	expected_r = s32((u32(imm) >> 16) & 0x00ff);
	expected_g = s32((u32(imm) >> 8) & 0x00ff);
	expected_b = s32((u32(imm) >> 0) & 0x00ff);
	rgb = rgbaint_t(u32(imm));
	check_expected("rgbaint_t(u32)");

	// while we have a value loaded that we know doesn't exceed 8-bit range, check the non-clamping convert-to-rgba
	packed = rgb.to_rgba();
	if (u32(imm) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba() = %08x (expected %08x)\n", u32(packed), u32(imm));

	// test set with rgb_t
	packed = random_u32();
	expected_a = s32(u32(packed.a()));
	expected_r = s32(u32(packed.r()));
	expected_g = s32(u32(packed.g()));
	expected_b = s32(u32(packed.b()));
	rgb.set(packed);
	check_expected("rgbaint_t::set(rgba_t)");

	// test construct with rgb_t
	packed = random_u32();
	expected_a = s32(u32(packed.a()));
	expected_r = s32(u32(packed.r()));
	expected_g = s32(u32(packed.g()));
	expected_b = s32(u32(packed.b()));
	rgb = rgbaint_t(packed);
	check_expected("rgbaint_t::set(rgba_t)");

	// test clamping convert-to-rgba with hand-crafted values to catch edge cases
	rgb.set(std::numeric_limits<s32>::min(), -1, 0, 1);
	packed = rgb.to_rgba_clamp();
	if (u32(0x00000001) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0x00000001)\n", u32(packed));
	rgb.set(254, 255, 256, std::numeric_limits<s32>::max());
	packed = rgb.to_rgba_clamp();
	if (u32(0xfeffffff) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0xfeffffff)\n", u32(packed));
	rgb.set(std::numeric_limits<s32>::max(), std::numeric_limits<s32>::min(), 256, -1);
	packed = rgb.to_rgba_clamp();
	if (u32(0xff00ff00) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0xff00ff00)\n", u32(packed));
	rgb.set(0, 255, 1, 254);
	packed = rgb.to_rgba_clamp();
	if (u32(0x00ff01fe) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0x00ff01fe)\n", u32(packed));

	// test in-place clamping with hand-crafted values to catch edge cases
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 1;
	rgb.set(std::numeric_limits<s32>::min(), -1, 0, 1);
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");
	expected_a = 254;
	expected_r = 255;
	expected_g = 255;
	expected_b = 255;
	rgb.set(254, 255, 256, std::numeric_limits<s32>::max());
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");
	expected_a = 255;
	expected_r = 0;
	expected_g = 255;
	expected_b = 0;
	rgb.set(std::numeric_limits<s32>::max(), std::numeric_limits<s32>::min(), 256, -1);
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");
	expected_a = 0;
	expected_r = 255;
	expected_g = 1;
	expected_b = 254;
	rgb.set(0, 255, 1, 254);
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");

	// test shift left
	expected_a = (actual_a = random_i32()) << 19;
	expected_r = (actual_r = random_i32()) << 3;
	expected_g = (actual_g = random_i32()) << 21;
	expected_b = (actual_b = random_i32()) << 6;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shl(rgbaint_t(19, 3, 21, 6));
	check_expected("rgbaint_t::shl");

	// test shift left immediate
	expected_a = (actual_a = random_i32()) << 7;
	expected_r = (actual_r = random_i32()) << 7;
	expected_g = (actual_g = random_i32()) << 7;
	expected_b = (actual_b = random_i32()) << 7;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shl_imm(7);
	check_expected("rgbaint_t::shl_imm");

	// test logical shift right
	expected_a = s32(u32(actual_a = random_i32()) >> 8);
	expected_r = s32(u32(actual_r = random_i32()) >> 18);
	expected_g = s32(u32(actual_g = random_i32()) >> 26);
	expected_b = s32(u32(actual_b = random_i32()) >> 4);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr(rgbaint_t(8, 18, 26, 4));
	check_expected("rgbaint_t::shr");

	// test logical shift right with opposite signs
	expected_a = s32(u32(actual_a = -actual_a) >> 21);
	expected_r = s32(u32(actual_r = -actual_r) >> 13);
	expected_g = s32(u32(actual_g = -actual_g) >> 11);
	expected_b = s32(u32(actual_b = -actual_b) >> 17);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr(rgbaint_t(21, 13, 11, 17));
	check_expected("rgbaint_t::shr");

	// test logical shift right immediate
	expected_a = s32(u32(actual_a = random_i32()) >> 5);
	expected_r = s32(u32(actual_r = random_i32()) >> 5);
	expected_g = s32(u32(actual_g = random_i32()) >> 5);
	expected_b = s32(u32(actual_b = random_i32()) >> 5);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr_imm(5);
	check_expected("rgbaint_t::shr_imm");

	// test logical shift right immediate with opposite signs
	expected_a = s32(u32(actual_a = -actual_a) >> 15);
	expected_r = s32(u32(actual_r = -actual_r) >> 15);
	expected_g = s32(u32(actual_g = -actual_g) >> 15);
	expected_b = s32(u32(actual_b = -actual_b) >> 15);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr_imm(15);
	check_expected("rgbaint_t::shr_imm");

	// test arithmetic shift right
	expected_a = (actual_a = random_i32()) >> 16;
	expected_r = (actual_r = random_i32()) >> 20;
	expected_g = (actual_g = random_i32()) >> 14;
	expected_b = (actual_b = random_i32()) >> 2;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra(rgbaint_t(16, 20, 14, 2));
	check_expected("rgbaint_t::sra");

	// test arithmetic shift right with opposite signs
	expected_a = (actual_a = -actual_a) >> 1;
	expected_r = (actual_r = -actual_r) >> 29;
	expected_g = (actual_g = -actual_g) >> 10;
	expected_b = (actual_b = -actual_b) >> 22;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra(rgbaint_t(1, 29, 10, 22));
	check_expected("rgbaint_t::sra");

	// test arithmetic shift right immediate (method)
	expected_a = (actual_a = random_i32()) >> 12;
	expected_r = (actual_r = random_i32()) >> 12;
	expected_g = (actual_g = random_i32()) >> 12;
	expected_b = (actual_b = random_i32()) >> 12;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra_imm(12);
	check_expected("rgbaint_t::sra_imm");

	// test arithmetic shift right immediate with opposite signs (method)
	expected_a = (actual_a = -actual_a) >> 9;
	expected_r = (actual_r = -actual_r) >> 9;
	expected_g = (actual_g = -actual_g) >> 9;
	expected_b = (actual_b = -actual_b) >> 9;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra_imm(9);
	check_expected("rgbaint_t::sra_imm");

	// test arithmetic shift right immediate (operator)
	expected_a = (actual_a = random_i32()) >> 7;
	expected_r = (actual_r = random_i32()) >> 7;
	expected_g = (actual_g = random_i32()) >> 7;
	expected_b = (actual_b = random_i32()) >> 7;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb >>= 7;
	check_expected("rgbaint_t::operator>>=");

	// test arithmetic shift right immediate with opposite signs (operator)
	expected_a = (actual_a = -actual_a) >> 11;
	expected_r = (actual_r = -actual_r) >> 11;
	expected_g = (actual_g = -actual_g) >> 11;
	expected_b = (actual_b = -actual_b) >> 11;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb >>= 11;
	check_expected("rgbaint_t::operator>>=");

	// test RGB equality comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq(rgbaint_t(actual_a, actual_r - 1, actual_g + 1, std::numeric_limits<s32>::min()));
	check_expected("rgbaint_t::cmpeq");
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq(rgbaint_t(std::numeric_limits<s32>::max(), actual_r, actual_g - 1, actual_b + 1));
	check_expected("rgbaint_t::cmpeq");

	// test immediate equality comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = ~s32(0);
	expected_r = (actual_r == actual_a) ? ~s32(0) : 0;
	expected_g = (actual_g == actual_a) ? ~s32(0) : 0;
	expected_b = (actual_b == actual_a) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_a);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = (actual_a == actual_r) ? ~s32(0) : 0;
	expected_r = ~s32(0);
	expected_g = (actual_g == actual_r) ? ~s32(0) : 0;
	expected_b = (actual_b == actual_r) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_r);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = (actual_a == actual_g) ? ~s32(0) : 0;
	expected_r = (actual_r == actual_g) ? ~s32(0) : 0;
	expected_g = ~s32(0);
	expected_b = (actual_b == actual_g) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_g);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = (actual_a == actual_b) ? ~s32(0) : 0;
	expected_r = (actual_r == actual_b) ? ~s32(0) : 0;
	expected_g = (actual_g == actual_b) ? ~s32(0) : 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_b);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(std::numeric_limits<s32>::min());
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = !actual_a ? ~s32(0) : 0;
	expected_r = !actual_r ? ~s32(0) : 0;
	expected_g = !actual_g ? ~s32(0) : 0;
	expected_b = !actual_b ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(0);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(std::numeric_limits<s32>::max());
	check_expected("rgbaint_t::cmpeq_imm");

	// test immediate RGB equality comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm_rgba(std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_g, actual_b - 1);
	check_expected("rgbaint_t::cmpeq_imm_rgba");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm_rgba(actual_a + 1, std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_b);
	check_expected("rgbaint_t::cmpeq_imm_rgba");

	// test RGB greater than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt(rgbaint_t(actual_a, actual_r - 1, actual_g + 1, std::numeric_limits<s32>::min()));
	check_expected("rgbaint_t::cmpgt");
	expected_a = 0;
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt(rgbaint_t(std::numeric_limits<s32>::max(), actual_r, actual_g - 1, actual_b + 1));
	check_expected("rgbaint_t::cmpgt");

	// test immediate greater than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = (actual_r > actual_a) ? ~s32(0) : 0;
	expected_g = (actual_g > actual_a) ? ~s32(0) : 0;
	expected_b = (actual_b > actual_a) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_a);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > actual_r) ? ~s32(0) : 0;
	expected_r = 0;
	expected_g = (actual_g > actual_r) ? ~s32(0) : 0;
	expected_b = (actual_b > actual_r) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_r);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > actual_g) ? ~s32(0) : 0;
	expected_r = (actual_r > actual_g) ? ~s32(0) : 0;
	expected_g =0;
	expected_b = (actual_b > actual_g) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_g);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > actual_b) ? ~s32(0) : 0;
	expected_r = (actual_r > actual_b) ? ~s32(0) : 0;
	expected_g = (actual_g > actual_b) ? ~s32(0) : 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_b);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = ~s32(0);
	expected_r = ~s32(0);
	expected_g = ~s32(0);
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(std::numeric_limits<s32>::min());
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > 0) ? ~s32(0) : 0;
	expected_r = (actual_r > 0) ? ~s32(0) : 0;
	expected_g = (actual_g > 0) ? ~s32(0) : 0;
	expected_b = (actual_b > 0) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(0);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(std::numeric_limits<s32>::max());
	check_expected("rgbaint_t::cmpgt_imm");

	// test immediate RGB greater than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm_rgba(std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_g, actual_b - 1);
	check_expected("rgbaint_t::cmpgt_imm_rgba");
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm_rgba(actual_a + 1, std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_b);
	check_expected("rgbaint_t::cmpgt_imm_rgba");

	// test RGB less than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt(rgbaint_t(actual_a, actual_r - 1, actual_g + 1, std::numeric_limits<s32>::min()));
	check_expected("rgbaint_t::cmplt");
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt(rgbaint_t(std::numeric_limits<s32>::max(), actual_r, actual_g - 1, actual_b + 1));
	check_expected("rgbaint_t::cmplt");

	// test immediate less than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = (actual_r < actual_a) ? ~s32(0) : 0;
	expected_g = (actual_g < actual_a) ? ~s32(0) : 0;
	expected_b = (actual_b < actual_a) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_a);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < actual_r) ? ~s32(0) : 0;
	expected_r = 0;
	expected_g = (actual_g < actual_r) ? ~s32(0) : 0;
	expected_b = (actual_b < actual_r) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_r);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < actual_g) ? ~s32(0) : 0;
	expected_r = (actual_r < actual_g) ? ~s32(0) : 0;
	expected_g =0;
	expected_b = (actual_b < actual_g) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_g);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < actual_b) ? ~s32(0) : 0;
	expected_r = (actual_r < actual_b) ? ~s32(0) : 0;
	expected_g = (actual_g < actual_b) ? ~s32(0) : 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_b);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(std::numeric_limits<s32>::min());
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < 0) ? ~s32(0) : 0;
	expected_r = (actual_r < 0) ? ~s32(0) : 0;
	expected_g = (actual_g < 0) ? ~s32(0) : 0;
	expected_b = (actual_b < 0) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(0);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = ~s32(0);
	expected_r = ~s32(0);
	expected_g = ~s32(0);
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(std::numeric_limits<s32>::max());
	check_expected("rgbaint_t::cmplt_imm");

	// test immediate RGB less than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm_rgba(std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_g, actual_b - 1);
	check_expected("rgbaint_t::cmplt_imm_rgba");
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm_rgba(actual_a + 1, std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_b);
	check_expected("rgbaint_t::cmplt_imm_rgba");

	// test bilinear_filter and bilinear_filter_rgbaint
	// SSE implementation carries more internal precision between the bilinear stages
#if defined(MAME_RGB_HIGH_PRECISION)
	const int first_shift = 1;
#else
	const int first_shift = 8;
#endif
	for (int index = 0; index < 1000; index++)
	{
		u8 u, v;
		rgbaint_t rgb_point[4];
		u32 top_row, bottom_row;

		for (int i = 0; i < 4; i++)
		{
			rgb_point[i].set(random_u32());
		}

		switch (index)
		{
			case 0: u = 0; v = 0; break;
			case 1: u = 255; v = 255; break;
			case 2: u = 0; v = 255; break;
			case 3: u = 255; v = 0; break;
			case 4: u = 128; v = 128; break;
			case 5: u = 63; v = 32; break;
			default:
				u = random_u32() & 0xff;
				v = random_u32() & 0xff;
				break;
		}

		top_row = (rgb_point[0].get_a() * (256 - u) + rgb_point[1].get_a() * u) >> first_shift;
		bottom_row = (rgb_point[2].get_a() * (256 - u) + rgb_point[3].get_a() * u) >> first_shift;
		expected_a = (top_row * (256 - v) + bottom_row * v) >> (16 - first_shift);

		top_row = (rgb_point[0].get_r() * (256 - u) + rgb_point[1].get_r() * u) >> first_shift;
		bottom_row = (rgb_point[2].get_r() * (256 - u) + rgb_point[3].get_r() * u) >> first_shift;
		expected_r = (top_row * (256 - v) + bottom_row * v) >> (16 - first_shift);

		top_row = (rgb_point[0].get_g() * (256 - u) + rgb_point[1].get_g() * u) >> first_shift;
		bottom_row = (rgb_point[2].get_g() * (256 - u) + rgb_point[3].get_g() * u) >> first_shift;
		expected_g = (top_row * (256 - v) + bottom_row * v) >> (16 - first_shift);

		top_row = (rgb_point[0].get_b() * (256 - u) + rgb_point[1].get_b() * u) >> first_shift;
		bottom_row = (rgb_point[2].get_b() * (256 - u) + rgb_point[3].get_b() * u) >> first_shift;
		expected_b = (top_row * (256 - v) + bottom_row * v) >> (16 - first_shift);

		imm = rgbaint_t::bilinear_filter(rgb_point[0].to_rgba(), rgb_point[1].to_rgba(), rgb_point[2].to_rgba(), rgb_point[3].to_rgba(), u, v);
		rgb.set(imm);
		check_expected("rgbaint_t::bilinear_filter");

		rgb.bilinear_filter_rgbaint(rgb_point[0].to_rgba(), rgb_point[1].to_rgba(), rgb_point[2].to_rgba(), rgb_point[3].to_rgba(), u, v);
		check_expected("rgbaint_t::bilinear_filter_rgbaint");
	}
}


//-------------------------------------------------
//  validate_driver - validate basic driver
//  information
//-------------------------------------------------

void validity_checker::validate_driver(device_t &root)
{
	// check for duplicate names
	if (!m_names_map.insert(std::make_pair(m_current_driver->name, m_current_driver)).second)
	{
		const game_driver *match = m_names_map.find(m_current_driver->name)->second;
		osd_printf_error("Driver name is a duplicate of %s(%s)\n", core_filename_extract_base(match->type.source()), match->name);
	}

	// check for duplicate descriptions
	if (!m_descriptions_map.insert(std::make_pair(m_current_driver->type.fullname(), m_current_driver)).second)
	{
		const game_driver *match = m_descriptions_map.find(m_current_driver->type.fullname())->second;
		osd_printf_error("Driver description is a duplicate of %s(%s)\n", core_filename_extract_base(match->type.source()), match->name);
	}

	// determine if we are a clone
	bool is_clone = (strcmp(m_current_driver->parent, "0") != 0);
	int clone_of = driver_list::clone(*m_current_driver);
	if (clone_of != -1 && (driver_list::driver(clone_of).flags & machine_flags::IS_BIOS_ROOT))
		is_clone = false;

	// if we have at least 100 drivers, validate the clone
	// (100 is arbitrary, but tries to avoid tiny.mak dependencies)
	if (driver_list::total() > 100 && clone_of == -1 && is_clone)
		osd_printf_error("Driver is a clone of nonexistent driver %s\n", m_current_driver->parent);

	// look for recursive cloning
	if (clone_of != -1 && &driver_list::driver(clone_of) == m_current_driver)
		osd_printf_error("Driver is a clone of itself\n");

	// look for clones that are too deep
	if (clone_of != -1 && (clone_of = driver_list::non_bios_clone(clone_of)) != -1)
		osd_printf_error("Driver is a clone of a clone\n");

	// make sure the driver name is not too long
	if (!is_clone && strlen(m_current_driver->name) > 16)
		osd_printf_error("Parent driver name must be 16 characters or less\n");
	if (is_clone && strlen(m_current_driver->name) > 16)
		osd_printf_error("Clone driver name must be 16 characters or less\n");

	// make sure the driver name doesn't contain invalid characters
	for (const char *s = m_current_driver->name; *s != 0; s++)
		if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != '_'))
		{
			osd_printf_error("Driver name contains invalid characters\n");
			break;
		}

	// make sure the year is only digits, '?' or '+'
	for (const char *s = m_current_driver->year; *s != 0; s++)
		if (!isdigit(u8(*s)) && *s != '?' && *s != '+')
		{
			osd_printf_error("Driver has an invalid year '%s'\n", m_current_driver->year);
			break;
		}

	// normalize driver->compatible_with
	const char *compatible_with = m_current_driver->compatible_with;
	if (compatible_with != nullptr && strcmp(compatible_with, "0") == 0)
		compatible_with = nullptr;

	// check for this driver being compatible with a nonexistent driver
	if (compatible_with != nullptr && driver_list::find(m_current_driver->compatible_with) == -1)
		osd_printf_error("Driver is listed as compatible with nonexistent driver %s\n", m_current_driver->compatible_with);

	// check for clone_of and compatible_with being specified at the same time
	if (driver_list::clone(*m_current_driver) != -1 && compatible_with != nullptr)
		osd_printf_error("Driver cannot be both a clone and listed as compatible with another system\n");

	// find any recursive dependencies on the current driver
	for (int other_drv = driver_list::compatible_with(*m_current_driver); other_drv != -1; other_drv = driver_list::compatible_with(other_drv))
		if (m_current_driver == &driver_list::driver(other_drv))
		{
			osd_printf_error("Driver is recursively compatible with itself\n");
			break;
		}

	// make sure sound-less drivers are flagged
	device_t::feature_type const unemulated(m_current_driver->type.unemulated_features());
	device_t::feature_type const imperfect(m_current_driver->type.imperfect_features());
	if (!(m_current_driver->flags & (machine_flags::IS_BIOS_ROOT | machine_flags::NO_SOUND_HW)) && !(unemulated & device_t::feature::SOUND))
	{
		sound_interface_enumerator iter(root);
		if (!iter.first())
			osd_printf_error("Driver is missing MACHINE_NO_SOUND or MACHINE_NO_SOUND_HW flag\n");
	}

	// catch invalid flag combinations
	if (unemulated & ~device_t::feature::ALL)
		osd_printf_error("Driver has invalid unemulated feature flags (0x%08lX)\n", static_cast<unsigned long>(unemulated & ~device_t::feature::ALL));
	if (imperfect & ~device_t::feature::ALL)
		osd_printf_error("Driver has invalid imperfect feature flags (0x%08lX)\n", static_cast<unsigned long>(imperfect & ~device_t::feature::ALL));
	if (unemulated & imperfect)
		osd_printf_error("Driver cannot have features that are both unemulated and imperfect (0x%08lX)\n", static_cast<unsigned long>(unemulated & imperfect));
	if ((m_current_driver->flags & machine_flags::NO_SOUND_HW) && ((unemulated | imperfect) & device_t::feature::SOUND))
		osd_printf_error("Machine without sound hardware cannot have unemulated/imperfect sound\n");
}


//-------------------------------------------------
//  validate_roms - validate ROM definitions
//-------------------------------------------------

void validity_checker::validate_roms(device_t &root)
{
	// iterate, starting with the driver's ROMs and continuing with device ROMs
	for (device_t &device : device_enumerator(root))
	{
		// track the current device
		m_current_device = &device;

		// scan the ROM entries for this device
		char const *last_region_name = "???";
		char const *last_name = "???";
		u32 current_length = 0;
		int items_since_region = 1;
		int last_bios = 0, max_bios = 0;
		int total_files = 0;
		std::unordered_map<std::string, int> bios_names;
		std::unordered_map<std::string, std::string> bios_descs;
		char const *defbios = nullptr;
		for (tiny_rom_entry const *romp = device.rom_region(); romp && !ROMENTRY_ISEND(romp); ++romp)
		{
			if (ROMENTRY_ISREGION(romp)) // if this is a region, make sure it's valid, and record the length
			{
				// if we haven't seen any items since the last region, print a warning
				if (items_since_region == 0)
					osd_printf_warning("Empty ROM region '%s' (warning)\n", last_region_name);

				// reset our region tracking states
				char const *const basetag = romp->name;
				items_since_region = (ROMREGION_ISERASE(romp) || ROMREGION_ISDISKDATA(romp)) ? 1 : 0;
				last_region_name = basetag;

				// check for a valid tag
				if (!basetag)
				{
					osd_printf_error("ROM_REGION tag with nullptr name\n");
					continue;
				}

				// validate the base tag
				validate_tag(basetag);

				// generate the full tag
				std::string const fulltag = device.subtag(romp->name);

				// attempt to add it to the map, reporting duplicates as errors
				current_length = ROMREGION_GETLENGTH(romp);
				if (!m_region_map.emplace(fulltag, current_length).second)
					osd_printf_error("Multiple ROM_REGIONs with the same tag '%s' defined\n", fulltag);
			}
			else if (ROMENTRY_ISSYSTEM_BIOS(romp)) // If this is a system bios, make sure it is using the next available bios number
			{
				int const bios_flags = ROM_GETBIOSFLAGS(romp);
				char const *const biosname = romp->name;
				if (bios_flags != last_bios + 1)
					osd_printf_error("Non-sequential BIOS %s (specified as %d, expected to be %d)\n", biosname, bios_flags - 1, last_bios);
				last_bios = bios_flags;

				// validate the name
				if (strlen(biosname) > 16)
					osd_printf_error("BIOS name %s exceeds maximum 16 characters\n", biosname);
				for (char const *s = biosname; *s; ++s)
				{
					if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != '.') && (*s != '_') && (*s != '-'))
					{
						osd_printf_error("BIOS name %s contains invalid characters\n", biosname);
						break;
					}
				}

				// check for duplicate names/descriptions
				auto const nameins = bios_names.emplace(biosname, bios_flags);
				if (!nameins.second)
					osd_printf_error("Duplicate BIOS name %s specified (%d and %d)\n", biosname, nameins.first->second, bios_flags - 1);
				auto const descins = bios_descs.emplace(romp->hashdata, biosname);
				if (!descins.second)
					osd_printf_error("BIOS %s has duplicate description '%s' (was %s)\n", biosname, romp->hashdata, descins.first->second);
			}
			else if (ROMENTRY_ISDEFAULT_BIOS(romp)) // if this is a default BIOS setting, remember it so it to check at the end
			{
				defbios = romp->name;
			}
			else if (ROMENTRY_ISFILE(romp)) // if this is a file, make sure it is properly formatted
			{
				// track the last filename we found
				last_name = romp->name;
				total_files++;
				max_bios = std::max<int>(max_bios, ROM_GETBIOSFLAGS(romp));

				// validate the name
				if (strlen(last_name) > 127)
					osd_printf_error("ROM label %s exceeds maximum 127 characters\n", last_name);
				for (char const *s = last_name; *s; ++s)
				{
					if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != ' ') && (*s != '@') && (*s != '.') && (*s != ',') && (*s != '_') && (*s != '-') && (*s != '+') && (*s != '='))
					{
						osd_printf_error("ROM label %s contains invalid characters\n", last_name);
						break;
					}
				}

				// make sure the hash is valid
				util::hash_collection hashes;
				if (!hashes.from_internal_string(romp->hashdata))
					osd_printf_error("ROM '%s' has an invalid hash string '%s'\n", last_name, romp->hashdata);
			}

			// for any non-region ending entries, make sure they don't extend past the end
			if (!ROMENTRY_ISREGIONEND(romp) && current_length > 0 && !ROMENTRY_ISIGNORE(romp)) // HBMAME
			{
				items_since_region++;
				if (!ROMENTRY_ISIGNORE(romp) && (ROM_GETOFFSET(romp) + ROM_GETLENGTH(romp) > current_length))
					osd_printf_error("ROM '%s' extends past the defined memory region\n", last_name);
			}
		}

		// if we haven't seen any items since the last region, print a warning
		if (items_since_region == 0)
			osd_printf_warning("Empty ROM region '%s' (warning)\n", last_region_name);

		// check that default BIOS exists
		if (defbios && (bios_names.find(defbios) == bios_names.end()))
			osd_printf_error("Default BIOS '%s' not found\n", defbios);
		if (!device.get_default_bios_tag().empty() && (bios_names.find(device.get_default_bios_tag()) == bios_names.end()))
			osd_printf_error("Configured BIOS '%s' not found\n", device.get_default_bios_tag());

		// check that there aren't ROMs for a non-existent BIOS option
		if (max_bios > last_bios)
			osd_printf_error("BIOS %d set on file is higher than maximum system BIOS number %d\n", max_bios - 1, last_bios - 1);

		// final check for empty regions
		if (items_since_region == 0)
			osd_printf_warning("Empty ROM region '%s' (warning)\n", last_region_name);

		// reset the current device
		m_current_device = nullptr;
	}
}


//-------------------------------------------------
//  validate_analog_input_field - validate an
//  analog input field
//-------------------------------------------------

void validity_checker::validate_analog_input_field(ioport_field &field)
{
	// analog ports must have a valid sensitivity
	if (field.sensitivity() == 0)
		osd_printf_error("Analog port with zero sensitivity\n");

	// check that the default falls in the bitmask range
	if (field.defvalue() & ~field.mask())
		osd_printf_error("Analog port with a default value (%X) out of the bitmask range (%X)\n", field.defvalue(), field.mask());

	// tests for positional devices
	if (field.type() == IPT_POSITIONAL || field.type() == IPT_POSITIONAL_V)
	{
		int shift;
		for (shift = 0; shift <= 31 && (~field.mask() & (1 << shift)) != 0; shift++) { }

		// convert the positional max value to be in the bitmask for testing
		//s32 analog_max = field.maxval();
		//analog_max = (analog_max - 1) << shift;

		// positional port size must fit in bits used
		if ((field.mask() >> shift) + 1 < field.maxval())
			osd_printf_error("Analog port with a positional port size bigger then the mask size\n");
	}

	// tests for absolute devices
	else if (field.type() > IPT_ANALOG_ABSOLUTE_FIRST && field.type() < IPT_ANALOG_ABSOLUTE_LAST)
	{
		// adjust for signed values
		s32 default_value = field.defvalue();
		s32 analog_min = field.minval();
		s32 analog_max = field.maxval();
		if (analog_min > analog_max)
		{
			analog_min = -analog_min;
			if (default_value > analog_max)
				default_value = -default_value;
		}

		// check that the default falls in the MINMAX range
		if (default_value < analog_min || default_value > analog_max)
			osd_printf_error("Analog port with a default value (%X) out of PORT_MINMAX range (%X-%X)\n", field.defvalue(), field.minval(), field.maxval());

		// check that the MINMAX falls in the bitmask range
		// we use the unadjusted min for testing
		if (field.minval() & ~field.mask() || analog_max & ~field.mask())
			osd_printf_error("Analog port with a PORT_MINMAX (%X-%X) value out of the bitmask range (%X)\n", field.minval(), field.maxval(), field.mask());

		// absolute analog ports do not use PORT_RESET
		if (field.analog_reset())
			osd_printf_error("Absolute analog port using PORT_RESET\n");

		// absolute analog ports do not use PORT_WRAPS
		if (field.analog_wraps())
			osd_printf_error("Absolute analog port using PORT_WRAPS\n");
	}

	// tests for non IPT_POSITIONAL relative devices
	else
	{
		// relative devices do not use PORT_MINMAX
		if (field.minval() != 0 || field.maxval() != field.mask())
			osd_printf_error("Relative port using PORT_MINMAX\n");

		// relative devices do not use a default value
		// the counter is at 0 on power up
		if (field.defvalue() != 0)
			osd_printf_error("Relative port using non-0 default value\n");

		// relative analog ports do not use PORT_WRAPS
		if (field.analog_wraps())
			osd_printf_error("Absolute analog port using PORT_WRAPS\n");
	}
}


//-------------------------------------------------
//  validate_dip_settings - validate a DIP switch
//  setting
//-------------------------------------------------

void validity_checker::validate_dip_settings(ioport_field &field)
{
	const char *demo_sounds = ioport_string_from_index(INPUT_STRING_Demo_Sounds);
	const char *flipscreen = ioport_string_from_index(INPUT_STRING_Flip_Screen);
	u8 coin_list[__input_string_coinage_end + 1 - __input_string_coinage_start] = { 0 };
	bool coin_error = false;

	// iterate through the settings
	for (ioport_setting &setting : field.settings())
	{
		// note any coinage strings
		int strindex = get_defstr_index(setting.name());
		if (strindex >= __input_string_coinage_start && strindex <= __input_string_coinage_end)
			coin_list[strindex - __input_string_coinage_start] = 1;

		// make sure demo sounds default to on
		if (field.name() == demo_sounds && strindex == INPUT_STRING_On && field.defvalue() != setting.value())
			osd_printf_error("Demo Sounds must default to On\n");

		// check for bad demo sounds options
		if (field.name() == demo_sounds && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No))
			osd_printf_error("Demo Sounds option must be Off/On, not %s\n", setting.name());

		// check for bad flip screen options
		if (field.name() == flipscreen && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No))
			osd_printf_error("Flip Screen option must be Off/On, not %s\n", setting.name());

		// if we have a neighbor, compare ourselves to him
		if (setting.next() != nullptr)
		{
			// check for inverted off/on dispswitch order
			int next_strindex = get_defstr_index(setting.next()->name(), true);
			if (strindex == INPUT_STRING_On && next_strindex == INPUT_STRING_Off)
				osd_printf_error("%s option must have Off/On options in the order: Off, On\n", field.name());

			// check for inverted yes/no dispswitch order
			else if (strindex == INPUT_STRING_Yes && next_strindex == INPUT_STRING_No)
				osd_printf_error("%s option must have Yes/No options in the order: No, Yes\n", field.name());

			// check for inverted upright/cocktail dispswitch order
			else if (strindex == INPUT_STRING_Cocktail && next_strindex == INPUT_STRING_Upright)
				osd_printf_error("%s option must have Upright/Cocktail options in the order: Upright, Cocktail\n", field.name());

			// check for proper coin ordering
			else if (strindex >= __input_string_coinage_start && strindex <= __input_string_coinage_end && next_strindex >= __input_string_coinage_start && next_strindex <= __input_string_coinage_end &&
						strindex >= next_strindex && setting.condition() == setting.next()->condition())
			{
				osd_printf_error("%s option has unsorted coinage %s > %s\n", field.name(), setting.name(), setting.next()->name());
				coin_error = true;
			}
		}
	}

	// if we have a coin error, demonstrate the correct way
	if (coin_error)
	{
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "   Note proper coin sort order should be:\n");
		for (int entry = 0; entry < ARRAY_LENGTH(coin_list); entry++)
			if (coin_list[entry])
				output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "      %s\n", ioport_string_from_index(__input_string_coinage_start + entry));
	}
}


//-------------------------------------------------
//  validate_condition - validate a condition
//  stored within an ioport field or setting
//-------------------------------------------------

void validity_checker::validate_condition(ioport_condition &condition, device_t &device)
{
	// resolve the tag, then find a matching port
	if (m_ioport_set.find(device.subtag(condition.tag())) == m_ioport_set.end())
		osd_printf_error("Condition referencing non-existent ioport tag '%s'\n", condition.tag());
}


//-------------------------------------------------
//  validate_inputs - validate input configuration
//-------------------------------------------------

void validity_checker::validate_inputs(device_t &root)
{
	// iterate over devices
	for (device_t &device : device_enumerator(root))
	{
		// see if this device has ports; if not continue
		if (device.input_ports() == nullptr)
			continue;

		// track the current device
		m_current_device = &device;

		// allocate the input ports
		ioport_list portlist;
		std::string errorbuf;
		portlist.append(device, errorbuf);

		// report any errors during construction
		if (!errorbuf.empty())
			osd_printf_error("I/O port error during construction:\n%s\n", errorbuf);

		// do a first pass over ports to add their names and find duplicates
		for (auto &port : portlist)
			if (!m_ioport_set.insert(port.second->tag()).second)
				osd_printf_error("Multiple I/O ports with the same tag '%s' defined\n", port.second->tag());

		// iterate over ports
		for (auto &port : portlist)
		{
			m_current_ioport = port.second->tag();

			// scan for invalid characters
			static char const *const validchars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_.:^$";
			for (char const *p = m_current_ioport; *p; ++p)
			{
				if (*p == ' ')
				{
					osd_printf_error("Tag '%s' contains spaces\n", m_current_ioport);
					break;
				}
				if (!strchr(validchars, *p))
				{
					osd_printf_error("Tag '%s' contains invalid character '%c'\n",  m_current_ioport, *p);
					break;
				}
			}

			// iterate through the fields on this port
			for (ioport_field &field : port.second->fields())
			{
				// verify analog inputs
				if (field.is_analog())
					validate_analog_input_field(field);

				// look for invalid (0) types which should be mapped to IPT_OTHER
				if (field.type() == IPT_INVALID)
					osd_printf_error("Field has an invalid type (0); use IPT_OTHER instead\n");

				if (field.type() == IPT_SPECIAL)
					osd_printf_error("Field has an invalid type IPT_SPECIAL\n");

				// verify dip switches
				if (field.type() == IPT_DIPSWITCH)
				{
					// dip switch fields must have a specific name
					if (field.specific_name() == nullptr)
						osd_printf_error("DIP switch has no specific name\n");

					// verify the settings list
					validate_dip_settings(field);
				}

				// verify config settings
				if (field.type() == IPT_CONFIG)
				{
					// config fields must have a specific name
					if (field.specific_name() == nullptr)
						osd_printf_error("Config switch has no specific name\n");
				}

				// verify names
				const char *name = field.specific_name();
				if (name != nullptr)
				{
					// check for empty string
					if (name[0] == 0)
						osd_printf_error("Field name is an empty string\n");

					// check for trailing spaces
					if (name[0] != 0 && name[strlen(name) - 1] == ' ')
						osd_printf_error("Field '%s' has trailing spaces\n", name);

					// check for invalid UTF-8
					if (!utf8_is_valid_string(name))
						osd_printf_error("Field '%s' has invalid characters\n", name);

					// look up the string and print an error if default strings are not used
					/*strindex =get_defstr_index(defstr_map, name, driver, &error);*/
				}

				// verify conditions on the field
				if (!field.condition().none())
					validate_condition(field.condition(), device);

				// verify conditions on the settings
				for (ioport_setting &setting : field.settings())
					if (!setting.condition().none())
						validate_condition(setting.condition(), device);

				// verify natural keyboard codes
				for (int which = 0; which < 1 << (UCHAR_SHIFT_END - UCHAR_SHIFT_BEGIN + 1); which++)
				{
					std::vector<char32_t> codes = field.keyboard_codes(which);
					for (char32_t code : codes)
					{
						if (!uchar_isvalid(code))
						{
							osd_printf_error("Field '%s' has non-character U+%04X in PORT_CHAR(%d)\n",
									name,
									(unsigned)code,
									(int)code);
						}
					}
				}
			}

			// done with this port
			m_current_ioport = nullptr;
		}

		// done with this device
		m_current_device = nullptr;
	}
}


//-------------------------------------------------
//  validate_devices - run per-device validity
//  checks
//-------------------------------------------------

void validity_checker::validate_devices(machine_config &config)
{
	std::unordered_set<std::string> device_map;

	for (device_t &device : device_enumerator(config.root_device()))
	{
		// track the current device
		m_current_device = &device;

		// validate auto-finders
		device.findit(this);

		// validate the device tag
		validate_tag(device.basetag());

		// look for duplicates
		bool duplicate = !device_map.insert(device.tag()).second;
		if (duplicate)
			osd_printf_error("Multiple devices with the same tag defined\n");

		// check for device-specific validity check
		device.validity_check(*this);

		// done with this device
		m_current_device = nullptr;

		// if it's a slot, iterate over possible cards (don't recurse, or you'll stack infinite tee connectors)
		device_slot_interface *const slot = dynamic_cast<device_slot_interface *>(&device);
		if (slot && !slot->fixed() && !duplicate)
		{
			for (auto &option : slot->option_list())
			{
				// the default option is already instantiated here, so don't try adding it again
				if (slot->default_option() != nullptr && option.first == slot->default_option())
					continue;

				m_checking_card = true;
				device_t *card;
				{
					machine_config::token const tok(config.begin_configuration(slot->device()));
					card = config.device_add(option.second->name(), option.second->devtype(), option.second->clock());

					const char *const def_bios = option.second->default_bios();
					if (def_bios)
						card->set_default_bios_tag(def_bios);
					auto additions = option.second->machine_config();
					if (additions)
						additions(card);
				}

				for (device_slot_interface &subslot : slot_interface_enumerator(*card))
				{
					if (subslot.fixed())
					{
						// TODO: make this self-contained so it can apply itself
						device_slot_interface::slot_option const *suboption = subslot.option(subslot.default_option());
						if (suboption)
						{
							machine_config::token const tok(config.begin_configuration(subslot.device()));
							device_t *const sub_card = config.device_add(suboption->name(), suboption->devtype(), suboption->clock());
							const char *const sub_bios = suboption->default_bios();
							if (sub_bios)
								sub_card->set_default_bios_tag(sub_bios);
							auto sub_additions = suboption->machine_config();
							if (sub_additions)
								sub_additions(sub_card);
						}
					}
				}

				for (device_t &card_dev : device_enumerator(*card))
					card_dev.config_complete();
				validate_roms(*card);

				for (device_t &card_dev : device_enumerator(*card))
				{
					m_current_device = &card_dev;
					card_dev.findit(this);
					card_dev.validity_check(*this);
					m_current_device = nullptr;
				}

				machine_config::token const tok(config.begin_configuration(slot->device()));
				config.device_remove(option.second->name());
				m_checking_card = false;
			}
		}
	}
}


//-------------------------------------------------
//  validate_devices_types - check validity of
//  registered device types
//-------------------------------------------------

void validity_checker::validate_device_types()
{
	// reset error/warning state
	int start_errors = m_errors;
	int start_warnings = m_warnings;
	m_error_text.clear();
	m_warning_text.clear();
	m_verbose_text.clear();

	std::unordered_map<std::string, std::add_pointer_t<device_type> > device_name_map, device_shortname_map;
	machine_config config(GAME_NAME(___empty), m_drivlist.options());
	machine_config::token const tok(config.begin_configuration(config.root_device()));
	for (device_type type : registered_device_types)
	{
		device_t *const dev = config.device_add(type.shortname(), type, 0);

		char const *name((dev->shortname() && *dev->shortname()) ? dev->shortname() : type.type().name());
		std::string const description((dev->source() && *dev->source()) ? util::string_format("%s(%s)", core_filename_extract_base(dev->source()).c_str(), name) : name);

		if (m_print_verbose)
			output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Validating device %s...\n", description.c_str());

		// ensure shortname exists
		if (!dev->shortname() || !*dev->shortname())
		{
			osd_printf_error("Device %s does not have short name defined\n", description);
		}
		else
		{
			// make sure the device name is not too long
			if (strlen(dev->shortname()) > 32)
				osd_printf_error("Device short name must be 32 characters or less\n");

			// check for invalid characters in shortname
			for (char const *s = dev->shortname(); *s; ++s)
			{
				if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != '_'))
				{
					osd_printf_error("Device %s short name contains invalid characters\n", description);
					break;
				}
			}

			// check for name conflicts
			std::string tmpname(dev->shortname());
			game_driver_map::const_iterator const drvname(m_names_map.find(tmpname));
			auto const devname(device_shortname_map.emplace(std::move(tmpname), &type));
			if (m_names_map.end() != drvname)
			{
				game_driver const &dup(*drvname->second);
				osd_printf_error("Device %s short name is a duplicate of %s(%s)\n", description, core_filename_extract_base(dup.type.source()), dup.name);
			}
			else if (!devname.second)
			{
				device_t *const dup = config.device_add("_dup", *devname.first->second, 0);
				osd_printf_error("Device %s short name is a duplicate of %s(%s)\n", description, core_filename_extract_base(dup->source()), dup->shortname());
				config.device_remove("_dup");
			}
		}

		// ensure name exists
		if (!dev->name() || !*dev->name())
		{
			osd_printf_error("Device %s does not have name defined\n", description);
		}
		else
		{
			// check for description conflicts
			std::string tmpdesc(dev->name());
			game_driver_map::const_iterator const drvdesc(m_descriptions_map.find(tmpdesc));
			auto const devdesc(device_name_map.emplace(std::move(tmpdesc), &type));
			if (m_descriptions_map.end() != drvdesc)
			{
				game_driver const &dup(*drvdesc->second);
				osd_printf_error("Device %s name '%s' is a duplicate of %s(%s)\n", description, dev->name(), core_filename_extract_base(dup.type.source()), dup.name);
			}
			else if (!devdesc.second)
			{
				device_t *const dup = config.device_add("_dup", *devdesc.first->second, 0);
				osd_printf_error("Device %s name '%s' is a duplicate of %s(%s)\n", description, dev->name(), core_filename_extract_base(dup->source()), dup->shortname());
				config.device_remove("_dup");
			}
		}

		// ensure source exists
		if (!dev->source() || !*dev->source())
			osd_printf_error("Device %s does not have source defined\n", description);

		// check that reported type matches supplied type
		if (dev->type().type() != type.type())
			osd_printf_error("Device %s reports type '%s' (created with '%s')\n", description, dev->type().type().name(), type.type().name());

		// catch invalid flag combinations
		device_t::feature_type const unemulated(dev->type().unemulated_features());
		device_t::feature_type const imperfect(dev->type().imperfect_features());
		if (unemulated & ~device_t::feature::ALL)
			osd_printf_error("Device has invalid unemulated feature flags (0x%08lX)\n", static_cast<unsigned long>(unemulated & ~device_t::feature::ALL));
		if (imperfect & ~device_t::feature::ALL)
			osd_printf_error("Device has invalid imperfect feature flags (0x%08lX)\n", static_cast<unsigned long>(imperfect & ~device_t::feature::ALL));
		if (unemulated & imperfect)
			osd_printf_error("Device cannot have features that are both unemulated and imperfect (0x%08lX)\n", static_cast<unsigned long>(unemulated & imperfect));

		// give devices some of the same scrutiny that drivers get - necessary for cards not default for any slots
		validate_roms(*dev);
		validate_inputs(*dev);

		// reset the device
		m_current_device = nullptr;
		m_current_ioport = nullptr;
		m_region_map.clear();
		m_ioport_set.clear();

		// remove the device in preparation for re-using the machine configuration
		config.device_remove(type.shortname());
	}

	// if we had warnings or errors, output
	if (m_errors > start_errors || m_warnings > start_warnings || !m_verbose_text.empty())
	{
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "%d errors, %d warnings\n", m_errors - start_errors, m_warnings - start_warnings);
		if (m_errors > start_errors)
			output_indented_errors(m_error_text, "Errors");
		if (m_warnings > start_warnings)
			output_indented_errors(m_warning_text, "Warnings");
		if (!m_verbose_text.empty())
			output_indented_errors(m_verbose_text, "Messages");
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "\n");
	}
}


//-------------------------------------------------
//  build_output_prefix - create a prefix
//  indicating the current source file, driver,
//  and device
//-------------------------------------------------

void validity_checker::build_output_prefix(std::ostream &str) const
{
	// if we have a current (non-root) device, indicate that
	if (m_current_device && m_current_device->owner())
		util::stream_format(str, "%s device '%s': ", m_current_device->name(), m_current_device->tag() + 1);

	// if we have a current port, indicate that as well
	if (m_current_ioport)
		util::stream_format(str, "ioport '%s': ", m_current_ioport);
}


//-------------------------------------------------
//  error_output - error message output override
//-------------------------------------------------

void validity_checker::output_callback(osd_output_channel channel, const util::format_argument_pack<std::ostream> &args)
{
	std::ostringstream output;
	switch (channel)
	{
	case OSD_OUTPUT_CHANNEL_ERROR:
		// count the error
		m_errors++;

		// output the source(driver) device 'tag'
		build_output_prefix(output);

		// generate the string
		util::stream_format(output, args);
		m_error_text.append(output.str());
		break;

	case OSD_OUTPUT_CHANNEL_WARNING:
		// count the error
		m_warnings++;

		// output the source(driver) device 'tag'
		build_output_prefix(output);

		// generate the string and output to the original target
		util::stream_format(output, args);
		m_warning_text.append(output.str());
		break;

	case OSD_OUTPUT_CHANNEL_VERBOSE:
		// if we're not verbose, skip it
		if (!m_print_verbose) break;

		// output the source(driver) device 'tag'
		build_output_prefix(output);

		// generate the string and output to the original target
		util::stream_format(output, args);
		m_verbose_text.append(output.str());
		break;

	default:
		chain_output(channel, args);
		break;
	}
}

//-------------------------------------------------
//  output_via_delegate - helper to output a
//  message via a varargs string, so the argptr
//  can be forwarded onto the given delegate
//-------------------------------------------------

template <typename Format, typename... Params>
void validity_checker::output_via_delegate(osd_output_channel channel, Format &&fmt, Params &&...args)
{
	// call through to the delegate with the proper parameters
	chain_output(channel, util::make_format_argument_pack(std::forward<Format>(fmt), std::forward<Params>(args)...));
}

//-------------------------------------------------
//  output_indented_errors - helper to output error
//  and warning messages with header and indents
//-------------------------------------------------
void validity_checker::output_indented_errors(std::string &text, const char *header)
{
	// remove trailing newline
	if (text[text.size()-1] == '\n')
		text.erase(text.size()-1, 1);
	strreplace(text, "\n", "\n   ");
	output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "%s:\n   %s\n", header, text.c_str());
}