summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/mb88xx
diff options
context:
space:
mode:
author Vas Crabb <vas@vastheman.com>2018-07-07 02:40:29 +1000
committer Vas Crabb <vas@vastheman.com>2018-07-07 02:40:29 +1000
commitc3fb11c2c98a5c28ece6a27093a0f9def350ac64 (patch)
treec68b38f05ed1d32358add721fda7f45e8803479f /src/devices/cpu/mb88xx
parent5d9e33b786d7ef452317439359f3cbd8cc920513 (diff)
devcb3
There are multiple issues with the current device callbacks: * They always dispatch through a pointer-to-member * Chained callbacks are a linked list so the branch unit can't predict the early * There's a runtime decision made on the left/right shift direction * There are runtime NULL checks on various objects * Binding a lambda isn't practical * Arbitrary transformations are not supported * When chaining callbacks it isn't clear what the MCFG_DEVCB_ modifiers apply to * It isn't possible to just append to a callback in derived configuration * The macros need a magic, hidden local called devcb * Moving code that uses the magic locals around is error-prone * Writing the MCFG_ macros to make a device usable is a pain * You can't discover applicable MCFG_ macros with intellisense * Macros are not scoped * Using an inappropriate macro isn't detected at compile time * Lots of other things This changeset overcomes the biggest obstacle to remving MCFG_ macros altogether. Essentially, to allow a devcb to be configured, call .bind() and expose the result (a bind target for the callback). Bind target methods starting with "set" repace the current callbacks; methods starting with "append" append to them. You can't reconfigure a callback after resolving it. There's no need to use a macro matching the handler signatures - use FUNC for everything. Current device is implied if no tag/finder is supplied (no need for explicit this). Lambdas are supported, and the memory space and offset are optional. These kinds of things work: * .read_cb().set([this] () { return something; }); * .read_cb().set([this] (offs_t offset) { return ~offset; }); * .write_cb().set([this] (offs_t offset, u8 data) { m_array[offset] = data; }); * .write_cb().set([this] (int state) { some_var = state; }); Arbitrary transforms are allowed, and they can modify offset/mask for example: * .read_cb().set(FUNC(my_state::handler)).transform([] (u8 data) { return bitswap<4>(data, 1, 3, 0, 2); }); * .read_cb().set(m_dev, FUNC(some_device::member)).transform([] (offs_t &offset, u8 data) { offset ^= 3; return data; }); It's possible to stack arbitrary transforms, at the cost of compile time (the whole transform stack gets inlined at compile time). Shifts count as an arbitrary transform, but mask/exor does not. Order of mask/shift/exor now matters. Modifications are applied in the specified order. These are NOT EQUIVALENT: * .read_cb().set(FUNC(my_state::handler)).mask(0x06).lshift(2); * .read_cb().set(FUNC(my_state::handler)).lshift(2).mask(0x06); The bit helper no longer reverses its behaviour for read callbacks, and I/O ports are no longer aware of the field mask. Binding a read callback to no-op is not supported - specify a constant. The GND and VCC aliases have been removed intentionally - they're TTL-centric, and were already being abused. Other quirks have been preserved, including write logger only logging when the data is non-zero (quite unhelpful in many of the cases where it's used). Legacy syntax is still supported for simple cases, but will be phased out. New devices should not have MCFG_ macros. I don't think I've missed any fundamental issues, but if I've broken something, let me know.
Diffstat (limited to 'src/devices/cpu/mb88xx')
-rw-r--r--src/devices/cpu/mb88xx/mb88xx.h26
1 files changed, 13 insertions, 13 deletions
diff --git a/src/devices/cpu/mb88xx/mb88xx.h b/src/devices/cpu/mb88xx/mb88xx.h
index 6afe25aa57d..8c071ad8cec 100644
--- a/src/devices/cpu/mb88xx/mb88xx.h
+++ b/src/devices/cpu/mb88xx/mb88xx.h
@@ -54,47 +54,47 @@
// K (K3-K0): input-only port
#define MCFG_MB88XX_READ_K_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_read_k_callback(DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_read_k_callback(DEVCB_##_devcb);
// O (O7-O4 = OH, O3-O0 = OL): output through PLA
#define MCFG_MB88XX_WRITE_O_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_o_callback(DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_o_callback(DEVCB_##_devcb);
// P (P3-P0): output-only port
#define MCFG_MB88XX_WRITE_P_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_p_callback(DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_p_callback(DEVCB_##_devcb);
// R0 (R3-R0): input/output port
#define MCFG_MB88XX_READ_R0_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_read_r_callback(0, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_read_r_callback(0, DEVCB_##_devcb);
#define MCFG_MB88XX_WRITE_R0_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_r_callback(0, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_r_callback(0, DEVCB_##_devcb);
// R1 (R7-R4): input/output port
#define MCFG_MB88XX_READ_R1_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_read_r_callback(1, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_read_r_callback(1, DEVCB_##_devcb);
#define MCFG_MB88XX_WRITE_R1_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_r_callback(1, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_r_callback(1, DEVCB_##_devcb);
// R2 (R11-R8): input/output port
#define MCFG_MB88XX_READ_R2_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_read_r_callback(2, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_read_r_callback(2, DEVCB_##_devcb);
#define MCFG_MB88XX_WRITE_R2_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_r_callback(2, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_r_callback(2, DEVCB_##_devcb);
// R3 (R15-R12): input/output port
#define MCFG_MB88XX_READ_R3_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_read_r_callback(3, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_read_r_callback(3, DEVCB_##_devcb);
#define MCFG_MB88XX_WRITE_R3_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_r_callback(3, DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_r_callback(3, DEVCB_##_devcb);
// SI: serial input
#define MCFG_MB88XX_READ_SI_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_read_si_callback(DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_read_si_callback(DEVCB_##_devcb);
// SO: serial output
#define MCFG_MB88XX_WRITE_SO_CB(_devcb) \
- devcb = &downcast<mb88_cpu_device &>(*device).set_write_so_callback(DEVCB_##_devcb);
+ downcast<mb88_cpu_device &>(*device).set_write_so_callback(DEVCB_##_devcb);
// Configure 32 byte PLA; if nullptr (default) assume direct output
#define MCFG_MB88XX_OUTPUT_PLA(_pla) \