summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/m68000/m68kcpu.h
diff options
context:
space:
mode:
author Olivier Galibert <galibert@pobox.com>2019-04-29 08:39:44 +0200
committer Olivier Galibert <galibert@pobox.com>2019-04-29 22:04:15 +0200
commit132e64cfd9be5908ad1b40cdd93d05680ebd0643 (patch)
tree0cd9802baba98e932bed5f03ebc1c64d532e2069 /src/devices/cpu/m68000/m68kcpu.h
parent9ff8eaa12957825139d8c19d51db54f03463a95a (diff)
m680x0: Normalize type names to the short versions [O. Galibert]
Diffstat (limited to 'src/devices/cpu/m68000/m68kcpu.h')
-rw-r--r--src/devices/cpu/m68000/m68kcpu.h662
1 files changed, 331 insertions, 331 deletions
diff --git a/src/devices/cpu/m68000/m68kcpu.h b/src/devices/cpu/m68000/m68kcpu.h
index 377d4da11d9..ba7a515d11b 100644
--- a/src/devices/cpu/m68000/m68kcpu.h
+++ b/src/devices/cpu/m68000/m68kcpu.h
@@ -29,9 +29,9 @@
/* ======================================================================== */
/* Check for > 32bit sizes */
-static constexpr int8_t MAKE_INT_8(uint32_t A) { return (int8_t)(A); }
-static constexpr int16_t MAKE_INT_16(uint32_t A) { return (int16_t)(A); }
-static constexpr int32_t MAKE_INT_32(uint32_t A) { return (int32_t)(A); }
+static constexpr s8 MAKE_INT_8(u32 A) { return (s8)(A); }
+static constexpr s16 MAKE_INT_16(u32 A) { return (s16)(A); }
+static constexpr s32 MAKE_INT_32(u32 A) { return (s32)(A); }
/* ======================================================================== */
@@ -109,103 +109,103 @@ static constexpr int M68K_CACR_EI = 0x01; // Enable Instruction Cache
/* ---------------------------- General Macros ---------------------------- */
/* Bit Isolation Macros */
-static constexpr uint32_t BIT_0(uint32_t A) { return ((A) & 0x00000001); }
-static constexpr uint32_t BIT_1(uint32_t A) { return ((A) & 0x00000002); }
-static constexpr uint32_t BIT_2(uint32_t A) { return ((A) & 0x00000004); }
-static constexpr uint32_t BIT_3(uint32_t A) { return ((A) & 0x00000008); }
-static constexpr uint32_t BIT_4(uint32_t A) { return ((A) & 0x00000010); }
-static constexpr uint32_t BIT_5(uint32_t A) { return ((A) & 0x00000020); }
-static constexpr uint32_t BIT_6(uint32_t A) { return ((A) & 0x00000040); }
-static constexpr uint32_t BIT_7(uint32_t A) { return ((A) & 0x00000080); }
-static constexpr uint32_t BIT_8(uint32_t A) { return ((A) & 0x00000100); }
-static constexpr uint32_t BIT_9(uint32_t A) { return ((A) & 0x00000200); }
-static constexpr uint32_t BIT_A(uint32_t A) { return ((A) & 0x00000400); }
-static constexpr uint32_t BIT_B(uint32_t A) { return ((A) & 0x00000800); }
-static constexpr uint32_t BIT_C(uint32_t A) { return ((A) & 0x00001000); }
-static constexpr uint32_t BIT_D(uint32_t A) { return ((A) & 0x00002000); }
-static constexpr uint32_t BIT_E(uint32_t A) { return ((A) & 0x00004000); }
-static constexpr uint32_t BIT_F(uint32_t A) { return ((A) & 0x00008000); }
-static constexpr uint32_t BIT_10(uint32_t A) { return ((A) & 0x00010000); }
-static constexpr uint32_t BIT_11(uint32_t A) { return ((A) & 0x00020000); }
-static constexpr uint32_t BIT_12(uint32_t A) { return ((A) & 0x00040000); }
-static constexpr uint32_t BIT_13(uint32_t A) { return ((A) & 0x00080000); }
-static constexpr uint32_t BIT_14(uint32_t A) { return ((A) & 0x00100000); }
-static constexpr uint32_t BIT_15(uint32_t A) { return ((A) & 0x00200000); }
-static constexpr uint32_t BIT_16(uint32_t A) { return ((A) & 0x00400000); }
-static constexpr uint32_t BIT_17(uint32_t A) { return ((A) & 0x00800000); }
-static constexpr uint32_t BIT_18(uint32_t A) { return ((A) & 0x01000000); }
-static constexpr uint32_t BIT_19(uint32_t A) { return ((A) & 0x02000000); }
-static constexpr uint32_t BIT_1A(uint32_t A) { return ((A) & 0x04000000); }
-static constexpr uint32_t BIT_1B(uint32_t A) { return ((A) & 0x08000000); }
-static constexpr uint32_t BIT_1C(uint32_t A) { return ((A) & 0x10000000); }
-static constexpr uint32_t BIT_1D(uint32_t A) { return ((A) & 0x20000000); }
-static constexpr uint32_t BIT_1E(uint32_t A) { return ((A) & 0x40000000); }
-static constexpr uint32_t BIT_1F(uint32_t A) { return ((A) & 0x80000000); }
+static constexpr u32 BIT_0(u32 A) { return ((A) & 0x00000001); }
+static constexpr u32 BIT_1(u32 A) { return ((A) & 0x00000002); }
+static constexpr u32 BIT_2(u32 A) { return ((A) & 0x00000004); }
+static constexpr u32 BIT_3(u32 A) { return ((A) & 0x00000008); }
+static constexpr u32 BIT_4(u32 A) { return ((A) & 0x00000010); }
+static constexpr u32 BIT_5(u32 A) { return ((A) & 0x00000020); }
+static constexpr u32 BIT_6(u32 A) { return ((A) & 0x00000040); }
+static constexpr u32 BIT_7(u32 A) { return ((A) & 0x00000080); }
+static constexpr u32 BIT_8(u32 A) { return ((A) & 0x00000100); }
+static constexpr u32 BIT_9(u32 A) { return ((A) & 0x00000200); }
+static constexpr u32 BIT_A(u32 A) { return ((A) & 0x00000400); }
+static constexpr u32 BIT_B(u32 A) { return ((A) & 0x00000800); }
+static constexpr u32 BIT_C(u32 A) { return ((A) & 0x00001000); }
+static constexpr u32 BIT_D(u32 A) { return ((A) & 0x00002000); }
+static constexpr u32 BIT_E(u32 A) { return ((A) & 0x00004000); }
+static constexpr u32 BIT_F(u32 A) { return ((A) & 0x00008000); }
+static constexpr u32 BIT_10(u32 A) { return ((A) & 0x00010000); }
+static constexpr u32 BIT_11(u32 A) { return ((A) & 0x00020000); }
+static constexpr u32 BIT_12(u32 A) { return ((A) & 0x00040000); }
+static constexpr u32 BIT_13(u32 A) { return ((A) & 0x00080000); }
+static constexpr u32 BIT_14(u32 A) { return ((A) & 0x00100000); }
+static constexpr u32 BIT_15(u32 A) { return ((A) & 0x00200000); }
+static constexpr u32 BIT_16(u32 A) { return ((A) & 0x00400000); }
+static constexpr u32 BIT_17(u32 A) { return ((A) & 0x00800000); }
+static constexpr u32 BIT_18(u32 A) { return ((A) & 0x01000000); }
+static constexpr u32 BIT_19(u32 A) { return ((A) & 0x02000000); }
+static constexpr u32 BIT_1A(u32 A) { return ((A) & 0x04000000); }
+static constexpr u32 BIT_1B(u32 A) { return ((A) & 0x08000000); }
+static constexpr u32 BIT_1C(u32 A) { return ((A) & 0x10000000); }
+static constexpr u32 BIT_1D(u32 A) { return ((A) & 0x20000000); }
+static constexpr u32 BIT_1E(u32 A) { return ((A) & 0x40000000); }
+static constexpr u32 BIT_1F(u32 A) { return ((A) & 0x80000000); }
/* Get the most significant bit for specific sizes */
-static constexpr uint32_t GET_MSB_8(uint32_t A) { return ((A) & 0x80); }
-static constexpr uint32_t GET_MSB_9(uint32_t A) { return ((A) & 0x100); }
-static constexpr uint32_t GET_MSB_16(uint32_t A) { return ((A) & 0x8000); }
-static constexpr uint32_t GET_MSB_17(uint32_t A) { return ((A) & 0x10000); }
-static constexpr uint32_t GET_MSB_32(uint32_t A) { return ((A) & 0x80000000); }
-static constexpr uint64_t GET_MSB_33(uint64_t A) { return ((A) & 0x100000000U); }
+static constexpr u32 GET_MSB_8(u32 A) { return ((A) & 0x80); }
+static constexpr u32 GET_MSB_9(u32 A) { return ((A) & 0x100); }
+static constexpr u32 GET_MSB_16(u32 A) { return ((A) & 0x8000); }
+static constexpr u32 GET_MSB_17(u32 A) { return ((A) & 0x10000); }
+static constexpr u32 GET_MSB_32(u32 A) { return ((A) & 0x80000000); }
+static constexpr u64 GET_MSB_33(u64 A) { return ((A) & 0x100000000U); }
/* Isolate nibbles */
-static constexpr uint32_t LOW_NIBBLE(uint32_t A) { return ((A) & 0x0f); }
-static constexpr uint32_t HIGH_NIBBLE(uint32_t A) { return ((A) & 0xf0); }
+static constexpr u32 LOW_NIBBLE(u32 A) { return ((A) & 0x0f); }
+static constexpr u32 HIGH_NIBBLE(u32 A) { return ((A) & 0xf0); }
/* These are used to isolate 8, 16, and 32 bit sizes */
-static constexpr uint32_t MASK_OUT_ABOVE_2(uint32_t A) { return ((A) & 3); }
-static constexpr uint32_t MASK_OUT_ABOVE_8(uint32_t A) { return ((A) & 0xff); }
-static constexpr uint32_t MASK_OUT_ABOVE_16(uint32_t A) { return ((A) & 0xffff); }
-static constexpr uint32_t MASK_OUT_BELOW_2(uint32_t A) { return ((A) & ~3); }
-static constexpr uint32_t MASK_OUT_BELOW_8(uint32_t A) { return ((A) & ~0xff); }
-static constexpr uint32_t MASK_OUT_BELOW_16(uint32_t A) { return ((A) & ~0xffff); }
+static constexpr u32 MASK_OUT_ABOVE_2(u32 A) { return ((A) & 3); }
+static constexpr u32 MASK_OUT_ABOVE_8(u32 A) { return ((A) & 0xff); }
+static constexpr u32 MASK_OUT_ABOVE_16(u32 A) { return ((A) & 0xffff); }
+static constexpr u32 MASK_OUT_BELOW_2(u32 A) { return ((A) & ~3); }
+static constexpr u32 MASK_OUT_BELOW_8(u32 A) { return ((A) & ~0xff); }
+static constexpr u32 MASK_OUT_BELOW_16(u32 A) { return ((A) & ~0xffff); }
/* No need to mask if we are 32 bit */
-static constexpr uint32_t MASK_OUT_ABOVE_32(uint32_t A) { return ((A) & u64(0xffffffffU)); }
-static constexpr uint64_t MASK_OUT_BELOW_32(uint64_t A) { return ((A) & ~u64(0xffffffffU)); }
+static constexpr u32 MASK_OUT_ABOVE_32(u32 A) { return ((A) & u64(0xffffffffU)); }
+static constexpr u64 MASK_OUT_BELOW_32(u64 A) { return ((A) & ~u64(0xffffffffU)); }
/* Shift & Rotate Macros. */
-static constexpr uint32_t LSL(uint32 A, uint32_t C) { return ((A) << (C)); }
-static constexpr uint32_t LSR(uint32 A, uint32_t C) { return ((A) >> (C)); }
+static constexpr u32 LSL(u32 A, u32 C) { return ((A) << (C)); }
+static constexpr u32 LSR(u32 A, u32 C) { return ((A) >> (C)); }
/* We have to do this because the morons at ANSI decided that shifts
* by >= data size are undefined.
*/
-static constexpr uint32_t LSR_32(uint32 A, uint32_t C) { return ((C) < 32 ? (A) >> (C) : 0); }
-static constexpr uint32_t LSL_32(uint32 A, uint32_t C) { return ((C) < 32 ? (A) << (C) : 0); }
+static constexpr u32 LSR_32(u32 A, u32 C) { return ((C) < 32 ? (A) >> (C) : 0); }
+static constexpr u32 LSL_32(u32 A, u32 C) { return ((C) < 32 ? (A) << (C) : 0); }
-static constexpr uint64_t LSL_32_64(uint64_t A, uint32_t C) { return ((A) << (C)); }
-static constexpr uint64_t LSR_32_64(uint64_t A, uint32_t C) { return ((A) >> (C)); }
-static constexpr uint64_t ROL_33_64(uint64_t A, uint32_t C) { return (LSL_32_64(A, C) | LSR_32_64(A, 33 - (C))); }
-static constexpr uint64_t ROR_33_64(uint64_t A, uint32_t C) { return (LSR_32_64(A, C) | LSL_32_64(A, 33 - (C))); }
+static constexpr u64 LSL_32_64(u64 A, u32 C) { return ((A) << (C)); }
+static constexpr u64 LSR_32_64(u64 A, u32 C) { return ((A) >> (C)); }
+static constexpr u64 ROL_33_64(u64 A, u32 C) { return (LSL_32_64(A, C) | LSR_32_64(A, 33 - (C))); }
+static constexpr u64 ROR_33_64(u64 A, u32 C) { return (LSR_32_64(A, C) | LSL_32_64(A, 33 - (C))); }
-static constexpr uint32_t ROL_8(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C))); }
-static constexpr uint32_t ROL_9(uint32_t A, uint32_t C) { return (LSL(A, C) | LSR(A, 9-(C))); }
-static constexpr uint32_t ROL_16(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C))); }
-static constexpr uint32_t ROL_17(uint32_t A, uint32_t C) { return (LSL(A, C) | LSR(A, 17-(C))); }
-static constexpr uint32_t ROL_32(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C))); }
+static constexpr u32 ROL_8(u32 A, u32 C) { return MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C))); }
+static constexpr u32 ROL_9(u32 A, u32 C) { return (LSL(A, C) | LSR(A, 9-(C))); }
+static constexpr u32 ROL_16(u32 A, u32 C) { return MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C))); }
+static constexpr u32 ROL_17(u32 A, u32 C) { return (LSL(A, C) | LSR(A, 17-(C))); }
+static constexpr u32 ROL_32(u32 A, u32 C) { return MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C))); }
-static constexpr uint32_t ROR_8(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C))); }
-static constexpr uint32_t ROR_9(uint32_t A, uint32_t C) { return (LSR(A, C) | LSL(A, 9-(C))); }
-static constexpr uint32_t ROR_16(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C))); }
-static constexpr uint32_t ROR_17(uint32_t A, uint32_t C) { return (LSR(A, C) | LSL(A, 17-(C))); }
-static constexpr uint32_t ROR_32(uint32_t A, uint32_t C) { return MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C))); }
+static constexpr u32 ROR_8(u32 A, u32 C) { return MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C))); }
+static constexpr u32 ROR_9(u32 A, u32 C) { return (LSR(A, C) | LSL(A, 9-(C))); }
+static constexpr u32 ROR_16(u32 A, u32 C) { return MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C))); }
+static constexpr u32 ROR_17(u32 A, u32 C) { return (LSR(A, C) | LSL(A, 17-(C))); }
+static constexpr u32 ROR_32(u32 A, u32 C) { return MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C))); }
/* ------------------------------ CPU Access ------------------------------ */
/* Access the CPU registers */
-inline uint32_t (&REG_DA())[16] { return m_dar; } /* easy access to data and address regs */
-inline uint32_t (&REG_D())[16] { return m_dar; }
-inline uint32_t *REG_A() { return (m_dar+8); }
-inline uint32_t (&REG_SP_BASE())[7]{ return m_sp; }
-inline uint32_t &REG_USP() { return m_sp[0]; }
-inline uint32_t &REG_ISP() { return m_sp[4]; }
-inline uint32_t &REG_MSP() { return m_sp[6]; }
-inline uint32_t &REG_SP() { return m_dar[15]; }
+inline u32 (&REG_DA())[16] { return m_dar; } /* easy access to data and address regs */
+inline u32 (&REG_D())[16] { return m_dar; }
+inline u32 *REG_A() { return (m_dar+8); }
+inline u32 (&REG_SP_BASE())[7]{ return m_sp; }
+inline u32 &REG_USP() { return m_sp[0]; }
+inline u32 &REG_ISP() { return m_sp[4]; }
+inline u32 &REG_MSP() { return m_sp[6]; }
+inline u32 &REG_SP() { return m_dar[15]; }
/* ----------------------------- Configuration ---------------------------- */
@@ -213,26 +213,26 @@ inline uint32_t &REG_SP() { return m_dar[15]; }
/* These defines are dependant on the configuration defines in m68kconf.h */
/* Disable certain comparisons if we're not using all CPU types */
-inline uint32_t CPU_TYPE_IS_COLDFIRE() const { return ((m_cpu_type) & (CPU_TYPE_COLDFIRE)); }
+inline u32 CPU_TYPE_IS_COLDFIRE() const { return ((m_cpu_type) & (CPU_TYPE_COLDFIRE)); }
-inline uint32_t CPU_TYPE_IS_040_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_040 | CPU_TYPE_EC040)); }
+inline u32 CPU_TYPE_IS_040_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_040 | CPU_TYPE_EC040)); }
-inline uint32_t CPU_TYPE_IS_030_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040)); }
+inline u32 CPU_TYPE_IS_030_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040)); }
-inline uint32_t CPU_TYPE_IS_020_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
+inline u32 CPU_TYPE_IS_020_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
-inline uint32_t CPU_TYPE_IS_020_VARIANT() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_FSCPU32)); }
+inline u32 CPU_TYPE_IS_020_VARIANT() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_FSCPU32)); }
-inline uint32_t CPU_TYPE_IS_EC020_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
-inline uint32_t CPU_TYPE_IS_EC020_LESS() const { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020)); }
+inline u32 CPU_TYPE_IS_EC020_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
+inline u32 CPU_TYPE_IS_EC020_LESS() const { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020)); }
-inline uint32_t CPU_TYPE_IS_010() const { return ((m_cpu_type) == CPU_TYPE_010); }
-inline uint32_t CPU_TYPE_IS_010_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_EC030 | CPU_TYPE_030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
-inline uint32_t CPU_TYPE_IS_010_LESS() const { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_SCC070)); }
+inline u32 CPU_TYPE_IS_010() const { return ((m_cpu_type) == CPU_TYPE_010); }
+inline u32 CPU_TYPE_IS_010_PLUS() const { return ((m_cpu_type) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_EC030 | CPU_TYPE_030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
+inline u32 CPU_TYPE_IS_010_LESS() const { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_SCC070)); }
-inline uint32_t CPU_TYPE_IS_000() const { return ((m_cpu_type) == CPU_TYPE_000 || (m_cpu_type) == CPU_TYPE_008); }
+inline u32 CPU_TYPE_IS_000() const { return ((m_cpu_type) == CPU_TYPE_000 || (m_cpu_type) == CPU_TYPE_008); }
-inline uint32_t CPU_TYPE_IS_070() const { return ((m_cpu_type) == CPU_TYPE_SCC070); }
+inline u32 CPU_TYPE_IS_070() const { return ((m_cpu_type) == CPU_TYPE_SCC070); }
/* Initiates trace checking before each instruction (t1) */
@@ -252,94 +252,94 @@ inline void m68ki_exception_if_trace() { if(m_tracing) m68ki_exception_trace();
* where XXX is register X and YYY is register Y
*/
/* Data Register Isolation */
-inline uint32_t &DX() { return (REG_D()[(m_ir >> 9) & 7]); }
-inline uint32_t &DY() { return (REG_D()[m_ir & 7]); }
+inline u32 &DX() { return (REG_D()[(m_ir >> 9) & 7]); }
+inline u32 &DY() { return (REG_D()[m_ir & 7]); }
/* Address Register Isolation */
-inline uint32_t &AX() { return (REG_A()[(m_ir >> 9) & 7]); }
-inline uint32_t &AY() { return (REG_A()[m_ir & 7]); }
+inline u32 &AX() { return (REG_A()[(m_ir >> 9) & 7]); }
+inline u32 &AY() { return (REG_A()[m_ir & 7]); }
/* Effective Address Calculations */
-inline uint32_t EA_AY_AI_8() { return AY(); } /* address register indirect */
-inline uint32_t EA_AY_AI_16() { return EA_AY_AI_8(); }
-inline uint32_t EA_AY_AI_32() { return EA_AY_AI_8(); }
-inline uint32_t EA_AY_PI_8() { return (AY()++); } /* postincrement (size = byte) */
-inline uint32_t EA_AY_PI_16() { return ((AY()+=2)-2); } /* postincrement (size = word) */
-inline uint32_t EA_AY_PI_32() { return ((AY()+=4)-4); } /* postincrement (size = long) */
-inline uint32_t EA_AY_PD_8() { return (--AY()); } /* predecrement (size = byte) */
-inline uint32_t EA_AY_PD_16() { return (AY()-=2); } /* predecrement (size = word) */
-inline uint32_t EA_AY_PD_32() { return (AY()-=4); } /* predecrement (size = long) */
-inline uint32_t EA_AY_DI_8() { return (AY()+MAKE_INT_16(m68ki_read_imm_16())); } /* displacement */
-inline uint32_t EA_AY_DI_16() { return EA_AY_DI_8(); }
-inline uint32_t EA_AY_DI_32() { return EA_AY_DI_8(); }
-inline uint32_t EA_AY_IX_8() { return m68ki_get_ea_ix(AY()); } /* indirect + index */
-inline uint32_t EA_AY_IX_16() { return EA_AY_IX_8(); }
-inline uint32_t EA_AY_IX_32() { return EA_AY_IX_8(); }
-
-inline uint32_t EA_AX_AI_8() { return AX(); }
-inline uint32_t EA_AX_AI_16() { return EA_AX_AI_8(); }
-inline uint32_t EA_AX_AI_32() { return EA_AX_AI_8(); }
-inline uint32_t EA_AX_PI_8() { return (AX()++); }
-inline uint32_t EA_AX_PI_16() { return ((AX()+=2)-2); }
-inline uint32_t EA_AX_PI_32() { return ((AX()+=4)-4); }
-inline uint32_t EA_AX_PD_8() { return (--AX()); }
-inline uint32_t EA_AX_PD_16() { return (AX()-=2); }
-inline uint32_t EA_AX_PD_32() { return (AX()-=4); }
-inline uint32_t EA_AX_DI_8() { return (AX()+MAKE_INT_16(m68ki_read_imm_16())); }
-inline uint32_t EA_AX_DI_16() { return EA_AX_DI_8(); }
-inline uint32_t EA_AX_DI_32() { return EA_AX_DI_8(); }
-inline uint32_t EA_AX_IX_8() { return m68ki_get_ea_ix(AX()); }
-inline uint32_t EA_AX_IX_16() { return EA_AX_IX_8(); }
-inline uint32_t EA_AX_IX_32() { return EA_AX_IX_8(); }
-
-inline uint32_t EA_A7_PI_8() { return ((REG_A()[7]+=2)-2); }
-inline uint32_t EA_A7_PD_8() { return (REG_A()[7]-=2); }
-
-inline uint32_t EA_AW_8() { return MAKE_INT_16(m68ki_read_imm_16()); } /* absolute word */
-inline uint32_t EA_AW_16() { return EA_AW_8(); }
-inline uint32_t EA_AW_32() { return EA_AW_8(); }
-inline uint32_t EA_AL_8() { return m68ki_read_imm_32(); } /* absolute long */
-inline uint32_t EA_AL_16() { return EA_AL_8(); }
-inline uint32_t EA_AL_32() { return EA_AL_8(); }
-inline uint32_t EA_PCDI_8() { return m68ki_get_ea_pcdi(); } /* pc indirect + displacement */
-inline uint32_t EA_PCDI_16() { return EA_PCDI_8(); }
-inline uint32_t EA_PCDI_32() { return EA_PCDI_8(); }
-inline uint32_t EA_PCIX_8() { return m68ki_get_ea_pcix(); } /* pc indirect + index */
-inline uint32_t EA_PCIX_16() { return EA_PCIX_8(); }
-inline uint32_t EA_PCIX_32() { return EA_PCIX_8(); }
-
-
-inline uint32_t OPER_I_8() { return m68ki_read_imm_8(); }
-inline uint32_t OPER_I_16() { return m68ki_read_imm_16(); }
-inline uint32_t OPER_I_32() { return m68ki_read_imm_32(); }
+inline u32 EA_AY_AI_8() { return AY(); } /* address register indirect */
+inline u32 EA_AY_AI_16() { return EA_AY_AI_8(); }
+inline u32 EA_AY_AI_32() { return EA_AY_AI_8(); }
+inline u32 EA_AY_PI_8() { return (AY()++); } /* postincrement (size = byte) */
+inline u32 EA_AY_PI_16() { return ((AY()+=2)-2); } /* postincrement (size = word) */
+inline u32 EA_AY_PI_32() { return ((AY()+=4)-4); } /* postincrement (size = long) */
+inline u32 EA_AY_PD_8() { return (--AY()); } /* predecrement (size = byte) */
+inline u32 EA_AY_PD_16() { return (AY()-=2); } /* predecrement (size = word) */
+inline u32 EA_AY_PD_32() { return (AY()-=4); } /* predecrement (size = long) */
+inline u32 EA_AY_DI_8() { return (AY()+MAKE_INT_16(m68ki_read_imm_16())); } /* displacement */
+inline u32 EA_AY_DI_16() { return EA_AY_DI_8(); }
+inline u32 EA_AY_DI_32() { return EA_AY_DI_8(); }
+inline u32 EA_AY_IX_8() { return m68ki_get_ea_ix(AY()); } /* indirect + index */
+inline u32 EA_AY_IX_16() { return EA_AY_IX_8(); }
+inline u32 EA_AY_IX_32() { return EA_AY_IX_8(); }
+
+inline u32 EA_AX_AI_8() { return AX(); }
+inline u32 EA_AX_AI_16() { return EA_AX_AI_8(); }
+inline u32 EA_AX_AI_32() { return EA_AX_AI_8(); }
+inline u32 EA_AX_PI_8() { return (AX()++); }
+inline u32 EA_AX_PI_16() { return ((AX()+=2)-2); }
+inline u32 EA_AX_PI_32() { return ((AX()+=4)-4); }
+inline u32 EA_AX_PD_8() { return (--AX()); }
+inline u32 EA_AX_PD_16() { return (AX()-=2); }
+inline u32 EA_AX_PD_32() { return (AX()-=4); }
+inline u32 EA_AX_DI_8() { return (AX()+MAKE_INT_16(m68ki_read_imm_16())); }
+inline u32 EA_AX_DI_16() { return EA_AX_DI_8(); }
+inline u32 EA_AX_DI_32() { return EA_AX_DI_8(); }
+inline u32 EA_AX_IX_8() { return m68ki_get_ea_ix(AX()); }
+inline u32 EA_AX_IX_16() { return EA_AX_IX_8(); }
+inline u32 EA_AX_IX_32() { return EA_AX_IX_8(); }
+
+inline u32 EA_A7_PI_8() { return ((REG_A()[7]+=2)-2); }
+inline u32 EA_A7_PD_8() { return (REG_A()[7]-=2); }
+
+inline u32 EA_AW_8() { return MAKE_INT_16(m68ki_read_imm_16()); } /* absolute word */
+inline u32 EA_AW_16() { return EA_AW_8(); }
+inline u32 EA_AW_32() { return EA_AW_8(); }
+inline u32 EA_AL_8() { return m68ki_read_imm_32(); } /* absolute long */
+inline u32 EA_AL_16() { return EA_AL_8(); }
+inline u32 EA_AL_32() { return EA_AL_8(); }
+inline u32 EA_PCDI_8() { return m68ki_get_ea_pcdi(); } /* pc indirect + displacement */
+inline u32 EA_PCDI_16() { return EA_PCDI_8(); }
+inline u32 EA_PCDI_32() { return EA_PCDI_8(); }
+inline u32 EA_PCIX_8() { return m68ki_get_ea_pcix(); } /* pc indirect + index */
+inline u32 EA_PCIX_16() { return EA_PCIX_8(); }
+inline u32 EA_PCIX_32() { return EA_PCIX_8(); }
+
+
+inline u32 OPER_I_8() { return m68ki_read_imm_8(); }
+inline u32 OPER_I_16() { return m68ki_read_imm_16(); }
+inline u32 OPER_I_32() { return m68ki_read_imm_32(); }
/* --------------------------- Status Register ---------------------------- */
/* Flag Calculation Macros */
-static constexpr uint32_t CFLAG_8(uint32_t A) { return (A); }
-static constexpr uint32_t CFLAG_16(uint32_t A) { return ((A)>>8); }
+static constexpr u32 CFLAG_8(u32 A) { return (A); }
+static constexpr u32 CFLAG_16(u32 A) { return ((A)>>8); }
-static constexpr uint32_t CFLAG_ADD_32(uint32_t S, uint32_t D, uint32_t R) { return (((S & D) | (~R & (S | D)))>>23); }
-static constexpr uint32_t CFLAG_SUB_32(uint32_t S, uint32_t D, uint32_t R) { return (((S & R) | (~D & (S | R)))>>23); }
+static constexpr u32 CFLAG_ADD_32(u32 S, u32 D, u32 R) { return (((S & D) | (~R & (S | D)))>>23); }
+static constexpr u32 CFLAG_SUB_32(u32 S, u32 D, u32 R) { return (((S & R) | (~D & (S | R)))>>23); }
-static constexpr uint32_t VFLAG_ADD_8(uint32_t S, uint32_t D, uint32_t R) { return ((S^R) & (D^R)); }
-static constexpr uint32_t VFLAG_ADD_16(uint32_t S, uint32_t D, uint32_t R) { return (((S^R) & (D^R))>>8); }
-static constexpr uint32_t VFLAG_ADD_32(uint32_t S, uint32_t D, uint32_t R) { return (((S^R) & (D^R))>>24); }
+static constexpr u32 VFLAG_ADD_8(u32 S, u32 D, u32 R) { return ((S^R) & (D^R)); }
+static constexpr u32 VFLAG_ADD_16(u32 S, u32 D, u32 R) { return (((S^R) & (D^R))>>8); }
+static constexpr u32 VFLAG_ADD_32(u32 S, u32 D, u32 R) { return (((S^R) & (D^R))>>24); }
-static constexpr uint32_t VFLAG_SUB_8(uint32_t S, uint32_t D, uint32_t R) { return ((S^D) & (R^D)); }
-static constexpr uint32_t VFLAG_SUB_16(uint32_t S, uint32_t D, uint32_t R) { return (((S^D) & (R^D))>>8); }
-static constexpr uint32_t VFLAG_SUB_32(uint32_t S, uint32_t D, uint32_t R) { return (((S^D) & (R^D))>>24); }
+static constexpr u32 VFLAG_SUB_8(u32 S, u32 D, u32 R) { return ((S^D) & (R^D)); }
+static constexpr u32 VFLAG_SUB_16(u32 S, u32 D, u32 R) { return (((S^D) & (R^D))>>8); }
+static constexpr u32 VFLAG_SUB_32(u32 S, u32 D, u32 R) { return (((S^D) & (R^D))>>24); }
-static constexpr uint32_t NFLAG_8(uint32_t A) { return (A); }
-static constexpr uint32_t NFLAG_16(uint32_t A) { return ((A)>>8); }
-static constexpr uint32_t NFLAG_32(uint32_t A) { return ((A)>>24); }
-static constexpr uint32_t NFLAG_64(uint64_t A) { return ((A)>>56); }
+static constexpr u32 NFLAG_8(u32 A) { return (A); }
+static constexpr u32 NFLAG_16(u32 A) { return ((A)>>8); }
+static constexpr u32 NFLAG_32(u32 A) { return ((A)>>24); }
+static constexpr u32 NFLAG_64(u64 A) { return ((A)>>56); }
-static constexpr uint32_t ZFLAG_8(uint32_t A) { return MASK_OUT_ABOVE_8(A); }
-static constexpr uint32_t ZFLAG_16(uint32_t A) { return MASK_OUT_ABOVE_16(A); }
-static constexpr uint32_t ZFLAG_32(uint32_t A) { return MASK_OUT_ABOVE_32(A); }
+static constexpr u32 ZFLAG_8(u32 A) { return MASK_OUT_ABOVE_8(A); }
+static constexpr u32 ZFLAG_16(u32 A) { return MASK_OUT_ABOVE_16(A); }
+static constexpr u32 ZFLAG_32(u32 A) { return MASK_OUT_ABOVE_32(A); }
/* Flag values */
@@ -360,59 +360,59 @@ static constexpr int MFLAG_SET = 2;
static constexpr int MFLAG_CLEAR = 0;
/* Turn flag values into 1 or 0 */
-inline uint32_t XFLAG_1() const { return ((m_x_flag>>8)&1); }
-inline uint32_t NFLAG_1() const { return ((m_n_flag>>7)&1); }
-inline uint32_t VFLAG_1() const { return ((m_v_flag>>7)&1); }
-inline uint32_t ZFLAG_1() const { return (!m_not_z_flag); }
-inline uint32_t CFLAG_1() const { return ((m_c_flag>>8)&1); }
+inline u32 XFLAG_1() const { return ((m_x_flag>>8)&1); }
+inline u32 NFLAG_1() const { return ((m_n_flag>>7)&1); }
+inline u32 VFLAG_1() const { return ((m_v_flag>>7)&1); }
+inline u32 ZFLAG_1() const { return (!m_not_z_flag); }
+inline u32 CFLAG_1() const { return ((m_c_flag>>8)&1); }
/* Conditions */
-inline uint32_t COND_CS() const { return (m_c_flag&0x100); }
-inline uint32_t COND_CC() const { return (!COND_CS()); }
-inline uint32_t COND_VS() const { return (m_v_flag&0x80); }
-inline uint32_t COND_VC() const { return (!COND_VS()); }
-inline uint32_t COND_NE() const { return m_not_z_flag; }
-inline uint32_t COND_EQ() const { return (!COND_NE()); }
-inline uint32_t COND_MI() const { return (m_n_flag&0x80); }
-inline uint32_t COND_PL() const { return (!COND_MI()); }
-inline uint32_t COND_LT() const { return ((m_n_flag^m_v_flag)&0x80); }
-inline uint32_t COND_GE() const { return (!COND_LT()); }
-inline uint32_t COND_HI() const { return (COND_CC() && COND_NE()); }
-inline uint32_t COND_LS() const { return (COND_CS() || COND_EQ()); }
-inline uint32_t COND_GT() const { return (COND_GE() && COND_NE()); }
-inline uint32_t COND_LE() const { return (COND_LT() || COND_EQ()); }
+inline u32 COND_CS() const { return (m_c_flag&0x100); }
+inline u32 COND_CC() const { return (!COND_CS()); }
+inline u32 COND_VS() const { return (m_v_flag&0x80); }
+inline u32 COND_VC() const { return (!COND_VS()); }
+inline u32 COND_NE() const { return m_not_z_flag; }
+inline u32 COND_EQ() const { return (!COND_NE()); }
+inline u32 COND_MI() const { return (m_n_flag&0x80); }
+inline u32 COND_PL() const { return (!COND_MI()); }
+inline u32 COND_LT() const { return ((m_n_flag^m_v_flag)&0x80); }
+inline u32 COND_GE() const { return (!COND_LT()); }
+inline u32 COND_HI() const { return (COND_CC() && COND_NE()); }
+inline u32 COND_LS() const { return (COND_CS() || COND_EQ()); }
+inline u32 COND_GT() const { return (COND_GE() && COND_NE()); }
+inline u32 COND_LE() const { return (COND_LT() || COND_EQ()); }
/* Reversed conditions */
-inline uint32_t COND_NOT_CS() const { return COND_CC(); }
-inline uint32_t COND_NOT_CC() const { return COND_CS(); }
-inline uint32_t COND_NOT_VS() const { return COND_VC(); }
-inline uint32_t COND_NOT_VC() const { return COND_VS(); }
-inline uint32_t COND_NOT_NE() const { return COND_EQ(); }
-inline uint32_t COND_NOT_EQ() const { return COND_NE(); }
-inline uint32_t COND_NOT_MI() const { return COND_PL(); }
-inline uint32_t COND_NOT_PL() const { return COND_MI(); }
-inline uint32_t COND_NOT_LT() const { return COND_GE(); }
-inline uint32_t COND_NOT_GE() const { return COND_LT(); }
-inline uint32_t COND_NOT_HI() const { return COND_LS(); }
-inline uint32_t COND_NOT_LS() const { return COND_HI(); }
-inline uint32_t COND_NOT_GT() const { return COND_LE(); }
-inline uint32_t COND_NOT_LE() const { return COND_GT(); }
+inline u32 COND_NOT_CS() const { return COND_CC(); }
+inline u32 COND_NOT_CC() const { return COND_CS(); }
+inline u32 COND_NOT_VS() const { return COND_VC(); }
+inline u32 COND_NOT_VC() const { return COND_VS(); }
+inline u32 COND_NOT_NE() const { return COND_EQ(); }
+inline u32 COND_NOT_EQ() const { return COND_NE(); }
+inline u32 COND_NOT_MI() const { return COND_PL(); }
+inline u32 COND_NOT_PL() const { return COND_MI(); }
+inline u32 COND_NOT_LT() const { return COND_GE(); }
+inline u32 COND_NOT_GE() const { return COND_LT(); }
+inline u32 COND_NOT_HI() const { return COND_LS(); }
+inline u32 COND_NOT_LS() const { return COND_HI(); }
+inline u32 COND_NOT_GT() const { return COND_LE(); }
+inline u32 COND_NOT_LE() const { return COND_GT(); }
/* Not real conditions, but here for convenience */
-inline uint32_t COND_XS() const { return (m_x_flag&0x100); }
-inline uint32_t COND_XC() const { return (!COND_XS()); }
+inline u32 COND_XS() const { return (m_x_flag&0x100); }
+inline u32 COND_XC() const { return (!COND_XS()); }
/* Get the condition code register */
-inline uint32_t m68ki_get_ccr() const { return((COND_XS() >> 4) |
+inline u32 m68ki_get_ccr() const { return((COND_XS() >> 4) |
(COND_MI() >> 4) |
(COND_EQ() << 2) |
(COND_VS() >> 6) |
(COND_CS() >> 8)); }
/* Get the status register */
-inline uint32_t m68ki_get_sr() const { return (m_t1_flag |
+inline u32 m68ki_get_sr() const { return (m_t1_flag |
m_t0_flag |
(m_s_flag << 11) |
(m_m_flag << 11) |
@@ -424,33 +424,33 @@ inline uint32_t m68ki_get_sr() const { return (m_t1_flag |
/* ----------------------------- Read / Write ----------------------------- */
/* Read from the current address space */
-inline uint32_t m68ki_read_8(uint32_t address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
-inline uint32_t m68ki_read_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
-inline uint32_t m68ki_read_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
+inline u32 m68ki_read_8(u32 address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
+inline u32 m68ki_read_16(u32 address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
+inline u32 m68ki_read_32(u32 address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
/* Write to the current data space */
-inline void m68ki_write_8(uint32_t address, uint32_t value) { m68ki_write_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
-inline void m68ki_write_16(uint32_t address, uint32_t value) { m68ki_write_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
-inline void m68ki_write_32(uint32_t address, uint32_t value) { m68ki_write_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
-inline void m68ki_write_32_pd(uint32_t address, uint32_t value) { m68ki_write_32_pd_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
+inline void m68ki_write_8(u32 address, u32 value) { m68ki_write_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
+inline void m68ki_write_16(u32 address, u32 value) { m68ki_write_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
+inline void m68ki_write_32(u32 address, u32 value) { m68ki_write_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
+inline void m68ki_write_32_pd(u32 address, u32 value) { m68ki_write_32_pd_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
/* map read immediate 8 to read immediate 16 */
-inline uint32_t m68ki_read_imm_8() { return MASK_OUT_ABOVE_8(m68ki_read_imm_16()); }
+inline u32 m68ki_read_imm_8() { return MASK_OUT_ABOVE_8(m68ki_read_imm_16()); }
/* Map PC-relative reads */
-inline uint32_t m68ki_read_pcrel_8(uint32_t address) { return m68k_read_pcrelative_8(address); }
-inline uint32_t m68ki_read_pcrel_16(uint32_t address) { return m68k_read_pcrelative_16(address); }
-inline uint32_t m68ki_read_pcrel_32(uint32_t address) { return m68k_read_pcrelative_32(address); }
+inline u32 m68ki_read_pcrel_8(u32 address) { return m68k_read_pcrelative_8(address); }
+inline u32 m68ki_read_pcrel_16(u32 address) { return m68k_read_pcrelative_16(address); }
+inline u32 m68ki_read_pcrel_32(u32 address) { return m68k_read_pcrelative_32(address); }
/* Read from the program space */
-inline uint32_t m68ki_read_program_8(uint32_t address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
-inline uint32_t m68ki_read_program_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
-inline uint32_t m68ki_read_program_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
+inline u32 m68ki_read_program_8(u32 address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
+inline u32 m68ki_read_program_16(u32 address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
+inline u32 m68ki_read_program_32(u32 address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
/* Read from the data space */
-inline uint32_t m68ki_read_data_8(uint32_t address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
-inline uint32_t m68ki_read_data_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
-inline uint32_t m68ki_read_data_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
+inline u32 m68ki_read_data_8(u32 address) { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
+inline u32 m68ki_read_data_16(u32 address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
+inline u32 m68ki_read_data_32(u32 address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
@@ -464,11 +464,11 @@ void m68k_cause_bus_error();
-static const uint8_t m68ki_shift_8_table[65];
-static const uint16_t m68ki_shift_16_table[65];
-static const uint32_t m68ki_shift_32_table[65];
-static const uint8_t m68ki_exception_cycle_table[7][256];
-static const uint8_t m68ki_ea_idx_cycle_table[64];
+static const u8 m68ki_shift_8_table[65];
+static const u16 m68ki_shift_16_table[65];
+static const u32 m68ki_shift_32_table[65];
+static const u8 m68ki_exception_cycle_table[7][256];
+static const u8 m68ki_ea_idx_cycle_table[64];
/* ======================================================================== */
/* =========================== UTILITY FUNCTIONS ========================== */
@@ -532,14 +532,14 @@ inline void m68ki_ic_clear()
// read immediate word using the instruction cache
-inline uint32_t m68ki_ic_readimm16(uint32_t address)
+inline u32 m68ki_ic_readimm16(u32 address)
{
if (m_cacr & M68K_CACR_EI)
{
// 68020 series I-cache (MC68020 User's Manual, Section 4 - On-Chip Cache Memory)
if (m_cpu_type & (CPU_TYPE_EC020 | CPU_TYPE_020))
{
- uint32_t tag = (address >> 8) | (m_s_flag ? 0x1000000 : 0);
+ u32 tag = (address >> 8) | (m_s_flag ? 0x1000000 : 0);
int idx = (address >> 2) & 0x3f; // 1-of-64 select
// do a cache fill if the line is invalid or the tags don't match
@@ -551,7 +551,7 @@ inline uint32_t m68ki_ic_readimm16(uint32_t address)
return m_readimm16(address);
}
- uint32_t data = m_read32(address & ~3);
+ u32 data = m_read32(address & ~3);
//printf("m68k: doing cache fill at %08x (tag %08x idx %d)\n", address, tag, idx);
@@ -587,9 +587,9 @@ inline uint32_t m68ki_ic_readimm16(uint32_t address)
/* Handles all immediate reads, does address error check, function code setting,
* and prefetching if they are enabled in m68kconf.h
*/
-inline uint32_t m68ki_read_imm_16()
+inline u32 m68ki_read_imm_16()
{
- uint32_t result;
+ u32 result;
m_mmu_tmp_fc = m_s_flag | FUNCTION_CODE_USER_PROGRAM;
m_mmu_tmp_rw = 1;
@@ -614,9 +614,9 @@ inline uint32_t m68ki_read_imm_16()
return result;
}
-inline uint32_t m68ki_read_imm_32()
+inline u32 m68ki_read_imm_32()
{
- uint32_t temp_val;
+ u32 temp_val;
m_mmu_tmp_fc = m_s_flag | FUNCTION_CODE_USER_PROGRAM;
m_mmu_tmp_rw = 1;
@@ -651,14 +651,14 @@ inline uint32_t m68ki_read_imm_32()
* These functions will also check for address error and set the function
* code if they are enabled in m68kconf.h.
*/
-inline uint32_t m68ki_read_8_fc(uint32_t address, uint32_t fc)
+inline u32 m68ki_read_8_fc(u32 address, u32 fc)
{
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 1;
m_mmu_tmp_sz = M68K_SZ_BYTE;
return m_read8(address);
}
-inline uint32_t m68ki_read_16_fc(uint32_t address, uint32_t fc)
+inline u32 m68ki_read_16_fc(u32 address, u32 fc)
{
if (CPU_TYPE_IS_010_LESS())
{
@@ -669,7 +669,7 @@ inline uint32_t m68ki_read_16_fc(uint32_t address, uint32_t fc)
m_mmu_tmp_sz = M68K_SZ_WORD;
return m_read16(address);
}
-inline uint32_t m68ki_read_32_fc(uint32_t address, uint32_t fc)
+inline u32 m68ki_read_32_fc(u32 address, u32 fc)
{
if (CPU_TYPE_IS_010_LESS())
{
@@ -681,14 +681,14 @@ inline uint32_t m68ki_read_32_fc(uint32_t address, uint32_t fc)
return m_read32(address);
}
-inline void m68ki_write_8_fc(uint32_t address, uint32_t fc, uint32_t value)
+inline void m68ki_write_8_fc(u32 address, u32 fc, u32 value)
{
m_mmu_tmp_fc = fc;
m_mmu_tmp_rw = 0;
m_mmu_tmp_sz = M68K_SZ_BYTE;
m_write8(address, value);
}
-inline void m68ki_write_16_fc(uint32_t address, uint32_t fc, uint32_t value)
+inline void m68ki_write_16_fc(u32 address, u32 fc, u32 value)
{
if (CPU_TYPE_IS_010_LESS())
{
@@ -699,7 +699,7 @@ inline void m68ki_write_16_fc(uint32_t address, uint32_t fc, uint32_t value)
m_mmu_tmp_sz = M68K_SZ_WORD;
m_write16(address, value);
}
-inline void m68ki_write_32_fc(uint32_t address, uint32_t fc, uint32_t value)
+inline void m68ki_write_32_fc(u32 address, u32 fc, u32 value)
{
if (CPU_TYPE_IS_010_LESS())
{
@@ -716,7 +716,7 @@ inline void m68ki_write_32_fc(uint32_t address, uint32_t fc, uint32_t value)
* A real 68k first writes the high word to [address+2], and then writes the
* low word to [address].
*/
-inline void m68ki_write_32_pd_fc(uint32_t address, uint32_t fc, uint32_t value)
+inline void m68ki_write_32_pd_fc(u32 address, u32 fc, u32 value)
{
if (CPU_TYPE_IS_010_LESS())
{
@@ -735,14 +735,14 @@ inline void m68ki_write_32_pd_fc(uint32_t address, uint32_t fc, uint32_t value)
/* The program counter relative addressing modes cause operands to be
* retrieved from program space, not data space.
*/
-inline uint32_t m68ki_get_ea_pcdi()
+inline u32 m68ki_get_ea_pcdi()
{
- uint32_t old_pc = m_pc;
+ u32 old_pc = m_pc;
return old_pc + MAKE_INT_16(m68ki_read_imm_16());
}
-inline uint32_t m68ki_get_ea_pcix()
+inline u32 m68ki_get_ea_pcix()
{
return m68ki_get_ea_ix(m_pc);
}
@@ -789,13 +789,13 @@ inline uint32_t m68ki_get_ea_pcix()
* 1 011 mem indir with long outer
* 1 100-111 reserved
*/
-inline uint32_t m68ki_get_ea_ix(uint32_t An)
+inline u32 m68ki_get_ea_ix(u32 An)
{
/* An = base register */
- uint32_t extension = m68ki_read_imm_16();
- uint32_t Xn = 0; /* Index register */
- uint32_t bd = 0; /* Base Displacement */
- uint32_t od = 0; /* Outer Displacement */
+ u32 extension = m68ki_read_imm_16();
+ u32 Xn = 0; /* Index register */
+ u32 bd = 0; /* Base Displacement */
+ u32 od = 0; /* Outer Displacement */
if(CPU_TYPE_IS_010_LESS())
{
@@ -862,78 +862,78 @@ inline uint32_t m68ki_get_ea_ix(uint32_t An)
/* Fetch operands */
-inline uint32_t OPER_AY_AI_8() {uint32_t ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AY_AI_16() {uint32_t ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AY_AI_32() {uint32_t ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AY_PI_8() {uint32_t ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AY_PI_16() {uint32_t ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AY_PI_32() {uint32_t ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AY_PD_8() {uint32_t ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AY_PD_16() {uint32_t ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AY_PD_32() {uint32_t ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AY_DI_8() {uint32_t ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AY_DI_16() {uint32_t ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AY_DI_32() {uint32_t ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AY_IX_8() {uint32_t ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AY_IX_16() {uint32_t ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AY_IX_32() {uint32_t ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
-
-inline uint32_t OPER_AX_AI_8() {uint32_t ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AX_AI_16() {uint32_t ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AX_AI_32() {uint32_t ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AX_PI_8() {uint32_t ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AX_PI_16() {uint32_t ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AX_PI_32() {uint32_t ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AX_PD_8() {uint32_t ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AX_PD_16() {uint32_t ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AX_PD_32() {uint32_t ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AX_DI_8() {uint32_t ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AX_DI_16() {uint32_t ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AX_DI_32() {uint32_t ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AX_IX_8() {uint32_t ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AX_IX_16() {uint32_t ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AX_IX_32() {uint32_t ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
-
-inline uint32_t OPER_A7_PI_8() {uint32_t ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_A7_PD_8() {uint32_t ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
-
-inline uint32_t OPER_AW_8() {uint32_t ea = EA_AW_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AW_16() {uint32_t ea = EA_AW_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AW_32() {uint32_t ea = EA_AW_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_AL_8() {uint32_t ea = EA_AL_8(); return m68ki_read_8(ea); }
-inline uint32_t OPER_AL_16() {uint32_t ea = EA_AL_16(); return m68ki_read_16(ea);}
-inline uint32_t OPER_AL_32() {uint32_t ea = EA_AL_32(); return m68ki_read_32(ea);}
-inline uint32_t OPER_PCDI_8() {uint32_t ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
-inline uint32_t OPER_PCDI_16() {uint32_t ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
-inline uint32_t OPER_PCDI_32() {uint32_t ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
-inline uint32_t OPER_PCIX_8() {uint32_t ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
-inline uint32_t OPER_PCIX_16() {uint32_t ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
-inline uint32_t OPER_PCIX_32() {uint32_t ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
+inline u32 OPER_AY_AI_8() {u32 ea = EA_AY_AI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AY_AI_16() {u32 ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AY_AI_32() {u32 ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AY_PI_8() {u32 ea = EA_AY_PI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AY_PI_16() {u32 ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AY_PI_32() {u32 ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AY_PD_8() {u32 ea = EA_AY_PD_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AY_PD_16() {u32 ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AY_PD_32() {u32 ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AY_DI_8() {u32 ea = EA_AY_DI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AY_DI_16() {u32 ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AY_DI_32() {u32 ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AY_IX_8() {u32 ea = EA_AY_IX_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AY_IX_16() {u32 ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AY_IX_32() {u32 ea = EA_AY_IX_32(); return m68ki_read_32(ea);}
+
+inline u32 OPER_AX_AI_8() {u32 ea = EA_AX_AI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AX_AI_16() {u32 ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AX_AI_32() {u32 ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AX_PI_8() {u32 ea = EA_AX_PI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AX_PI_16() {u32 ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AX_PI_32() {u32 ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AX_PD_8() {u32 ea = EA_AX_PD_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AX_PD_16() {u32 ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AX_PD_32() {u32 ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AX_DI_8() {u32 ea = EA_AX_DI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AX_DI_16() {u32 ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AX_DI_32() {u32 ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AX_IX_8() {u32 ea = EA_AX_IX_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AX_IX_16() {u32 ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AX_IX_32() {u32 ea = EA_AX_IX_32(); return m68ki_read_32(ea);}
+
+inline u32 OPER_A7_PI_8() {u32 ea = EA_A7_PI_8(); return m68ki_read_8(ea); }
+inline u32 OPER_A7_PD_8() {u32 ea = EA_A7_PD_8(); return m68ki_read_8(ea); }
+
+inline u32 OPER_AW_8() {u32 ea = EA_AW_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AW_16() {u32 ea = EA_AW_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AW_32() {u32 ea = EA_AW_32(); return m68ki_read_32(ea);}
+inline u32 OPER_AL_8() {u32 ea = EA_AL_8(); return m68ki_read_8(ea); }
+inline u32 OPER_AL_16() {u32 ea = EA_AL_16(); return m68ki_read_16(ea);}
+inline u32 OPER_AL_32() {u32 ea = EA_AL_32(); return m68ki_read_32(ea);}
+inline u32 OPER_PCDI_8() {u32 ea = EA_PCDI_8(); return m68ki_read_pcrel_8(ea); }
+inline u32 OPER_PCDI_16() {u32 ea = EA_PCDI_16(); return m68ki_read_pcrel_16(ea);}
+inline u32 OPER_PCDI_32() {u32 ea = EA_PCDI_32(); return m68ki_read_pcrel_32(ea);}
+inline u32 OPER_PCIX_8() {u32 ea = EA_PCIX_8(); return m68ki_read_pcrel_8(ea); }
+inline u32 OPER_PCIX_16() {u32 ea = EA_PCIX_16(); return m68ki_read_pcrel_16(ea);}
+inline u32 OPER_PCIX_32() {u32 ea = EA_PCIX_32(); return m68ki_read_pcrel_32(ea);}
/* ---------------------------- Stack Functions --------------------------- */
/* Push/pull data from the stack */
-inline void m68ki_push_16(uint32_t value)
+inline void m68ki_push_16(u32 value)
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 2);
m68ki_write_16(REG_SP(), value);
}
-inline void m68ki_push_32(uint32_t value)
+inline void m68ki_push_32(u32 value)
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 4);
m68ki_write_32(REG_SP(), value);
}
-inline uint32_t m68ki_pull_16()
+inline u32 m68ki_pull_16()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 2);
return m68ki_read_16(REG_SP()-2);
}
-inline uint32_t m68ki_pull_32()
+inline u32 m68ki_pull_32()
{
REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 4);
return m68ki_read_32(REG_SP()-4);
@@ -970,12 +970,12 @@ inline void m68ki_fake_pull_32()
* These functions will also call the pc_changed callback if it was enabled
* in m68kconf.h.
*/
-inline void m68ki_jump(uint32_t new_pc)
+inline void m68ki_jump(u32 new_pc)
{
m_pc = new_pc;
}
-inline void m68ki_jump_vector(uint32_t vector)
+inline void m68ki_jump_vector(u32 vector)
{
m_pc = (vector<<2) + m_vbr;
m_pc = m68ki_read_data_32(m_pc);
@@ -987,17 +987,17 @@ inline void m68ki_jump_vector(uint32_t vector)
* So far I've found no problems with not calling pc_changed for 8 or 16
* bit branches.
*/
-inline void m68ki_branch_8(uint32_t offset)
+inline void m68ki_branch_8(u32 offset)
{
m_pc += MAKE_INT_8(offset);
}
-inline void m68ki_branch_16(uint32_t offset)
+inline void m68ki_branch_16(u32 offset)
{
m_pc += MAKE_INT_16(offset);
}
-inline void m68ki_branch_32(uint32_t offset)
+inline void m68ki_branch_32(u32 offset)
{
m_pc += offset;
}
@@ -1009,9 +1009,9 @@ inline void m68ki_branch_32(uint32_t offset)
/* Set the S flag and change the active stack pointer.
* Note that value MUST be 4 or 0.
*/
-inline void m68ki_set_s_flag(uint32_t value)
+inline void m68ki_set_s_flag(u32 value)
{
- uint32_t old_s_flag = m_s_flag;
+ u32 old_s_flag = m_s_flag;
/* Backup the old stack pointer */
REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)] = REG_SP();
/* Set the S flag */
@@ -1027,9 +1027,9 @@ inline void m68ki_set_s_flag(uint32_t value)
/* Set the S and M flags and change the active stack pointer.
* Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
*/
-inline void m68ki_set_sm_flag(uint32_t value)
+inline void m68ki_set_sm_flag(u32 value)
{
- uint32_t old_s_flag = m_s_flag;
+ u32 old_s_flag = m_s_flag;
/* Backup the old stack pointer */
REG_SP_BASE()[m_s_flag | ((m_s_flag >> 1) & m_m_flag)] = REG_SP();
/* Set the S and M flags */
@@ -1044,9 +1044,9 @@ inline void m68ki_set_sm_flag(uint32_t value)
}
/* Set the S and M flags. Don't touch the stack pointer. */
-inline void m68ki_set_sm_flag_nosp(uint32_t value)
+inline void m68ki_set_sm_flag_nosp(u32 value)
{
- uint32_t old_s_flag = m_s_flag;
+ u32 old_s_flag = m_s_flag;
/* Set the S and M flags */
m_s_flag = value & SFLAG_SET;
m_m_flag = value & MFLAG_SET;
@@ -1058,7 +1058,7 @@ inline void m68ki_set_sm_flag_nosp(uint32_t value)
/* Set the condition code register */
-inline void m68ki_set_ccr(uint32_t value)
+inline void m68ki_set_ccr(u32 value)
{
m_x_flag = BIT_4(value)<< 4;
m_n_flag = BIT_3(value)<< 4;
@@ -1068,7 +1068,7 @@ inline void m68ki_set_ccr(uint32_t value)
}
/* Set the status register but don't check for interrupts */
-inline void m68ki_set_sr_noint(uint32_t value)
+inline void m68ki_set_sr_noint(u32 value)
{
/* Mask out the "unimplemented" bits */
value &= m_sr_mask;
@@ -1084,7 +1084,7 @@ inline void m68ki_set_sr_noint(uint32_t value)
/* Set the status register but don't check for interrupts nor
* change the stack pointer
*/
-inline void m68ki_set_sr_noint_nosp(uint32_t value)
+inline void m68ki_set_sr_noint_nosp(u32 value)
{
/* Mask out the "unimplemented" bits */
value &= m_sr_mask;
@@ -1098,7 +1098,7 @@ inline void m68ki_set_sr_noint_nosp(uint32_t value)
}
/* Set the status register and check for interrupts */
-inline void m68ki_set_sr(uint32_t value)
+inline void m68ki_set_sr(u32 value)
{
m68ki_set_sr_noint(value);
m68ki_check_interrupts();
@@ -1108,10 +1108,10 @@ inline void m68ki_set_sr(uint32_t value)
/* ------------------------- Exception Processing ------------------------- */
/* Initiate exception processing */
-inline uint32_t m68ki_init_exception()
+inline u32 m68ki_init_exception()
{
/* Save the old status register */
- uint32_t sr = m68ki_get_sr();
+ u32 sr = m68ki_get_sr();
/* Turn off trace flag, clear pending traces */
m_t1_flag = m_t0_flag = 0;
@@ -1123,7 +1123,7 @@ inline uint32_t m68ki_init_exception()
}
/* 3 word stack frame (68000 only) */
-inline void m68ki_stack_frame_3word(uint32_t pc, uint32_t sr)
+inline void m68ki_stack_frame_3word(u32 pc, u32 sr)
{
m68ki_push_32(pc);
m68ki_push_16(sr);
@@ -1132,7 +1132,7 @@ inline void m68ki_stack_frame_3word(uint32_t pc, uint32_t sr)
/* Format 0 stack frame.
* This is the standard stack frame for 68010+.
*/
-inline void m68ki_stack_frame_0000(uint32_t pc, uint32_t sr, uint32_t vector)
+inline void m68ki_stack_frame_0000(u32 pc, u32 sr, u32 vector)
{
/* Stack a 3-word frame if we are 68000 */
if(CPU_TYPE_IS_000())
@@ -1148,7 +1148,7 @@ inline void m68ki_stack_frame_0000(uint32_t pc, uint32_t sr, uint32_t vector)
/* Format 1 stack frame (68020).
* For 68020, this is the 4 word throwaway frame.
*/
-inline void m68ki_stack_frame_0001(uint32_t pc, uint32_t sr, uint32_t vector)
+inline void m68ki_stack_frame_0001(u32 pc, u32 sr, u32 vector)
{
m68ki_push_16(0x1000 | (vector<<2));
m68ki_push_32(pc);
@@ -1158,7 +1158,7 @@ inline void m68ki_stack_frame_0001(uint32_t pc, uint32_t sr, uint32_t vector)
/* Format 2 stack frame.
* This is used only by 68020 for trap exceptions.
*/
-inline void m68ki_stack_frame_0010(uint32_t sr, uint32_t vector)
+inline void m68ki_stack_frame_0010(u32 sr, u32 vector)
{
m68ki_push_32(m_ppc);
m68ki_push_16(0x2000 | (vector<<2));
@@ -1169,7 +1169,7 @@ inline void m68ki_stack_frame_0010(uint32_t sr, uint32_t vector)
/* Bus error stack frame (68000 only).
*/
-inline void m68ki_stack_frame_buserr(uint32_t sr)
+inline void m68ki_stack_frame_buserr(u32 sr)
{
m68ki_push_32(m_pc);
m68ki_push_16(sr);
@@ -1186,7 +1186,7 @@ inline void m68ki_stack_frame_buserr(uint32_t sr)
/* Format 8 stack frame (68010).
* 68010 only. This is the 29 word bus/address error frame.
*/
-inline void m68ki_stack_frame_1000(uint32_t pc, uint32_t sr, uint32_t vector)
+inline void m68ki_stack_frame_1000(u32 pc, u32 sr, u32 vector)
{
/* VERSION
* NUMBER
@@ -1282,7 +1282,7 @@ inline void m68ki_stack_frame_1111(uint32_t pc, uint32_t sr, uint32_t vector)
* if the error happens at an instruction boundary.
* PC stacked is address of next instruction.
*/
-inline void m68ki_stack_frame_1010(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address)
+inline void m68ki_stack_frame_1010(u32 sr, u32 vector, u32 pc, u32 fault_address)
{
int orig_rw = m_mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m_mmu_tmp_buserror_fc;
@@ -1335,7 +1335,7 @@ inline void m68ki_stack_frame_1010(uint32_t sr, uint32_t vector, uint32_t pc, ui
* if the error happens during instruction execution.
* PC stacked is address of instruction in progress.
*/
-inline void m68ki_stack_frame_1011(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address)
+inline void m68ki_stack_frame_1011(u32 sr, u32 vector, u32 pc, u32 fault_address)
{
int orig_rw = m_mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m_mmu_tmp_buserror_fc;
@@ -1409,7 +1409,7 @@ inline void m68ki_stack_frame_1011(uint32_t sr, uint32_t vector, uint32_t pc, ui
* This is used by the 68040 for bus fault and mmu trap
* 30 words
*/
-inline void m68ki_stack_frame_0111(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address, bool in_mmu)
+inline void m68ki_stack_frame_0111(u32 sr, u32 vector, u32 pc, u32 fault_address, bool in_mmu)
{
int orig_rw = m_mmu_tmp_buserror_rw; // this gets splatted by the following pushes, so save it now
int orig_fc = m_mmu_tmp_buserror_fc;
@@ -1452,9 +1452,9 @@ inline void m68ki_stack_frame_0111(uint32_t sr, uint32_t vector, uint32_t pc, ui
/* Used for Group 2 exceptions.
* These stack a type 2 frame on the 020.
*/
-inline void m68ki_exception_trap(uint32_t vector)
+inline void m68ki_exception_trap(u32 vector)
{
- uint32_t sr = m68ki_init_exception();
+ u32 sr = m68ki_init_exception();
if(CPU_TYPE_IS_010_LESS())
m68ki_stack_frame_0000(m_pc, sr, vector);
@@ -1468,9 +1468,9 @@ inline void m68ki_exception_trap(uint32_t vector)
}
/* Trap#n stacks a 0 frame but behaves like group2 otherwise */
-inline void m68ki_exception_trapN(uint32_t vector)
+inline void m68ki_exception_trapN(u32 vector)
{
- uint32_t sr = m68ki_init_exception();
+ u32 sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_pc, sr, vector);
m68ki_jump_vector(vector);
@@ -1481,7 +1481,7 @@ inline void m68ki_exception_trapN(uint32_t vector)
/* Exception for trace mode */
inline void m68ki_exception_trace()
{
- uint32_t sr = m68ki_init_exception();
+ u32 sr = m68ki_init_exception();
if(CPU_TYPE_IS_010_LESS())
{
@@ -1506,7 +1506,7 @@ inline void m68ki_exception_trace()
/* Exception for privilege violation */
inline void m68ki_exception_privilege_violation()
{
- uint32_t sr = m68ki_init_exception();
+ u32 sr = m68ki_init_exception();
if(CPU_TYPE_IS_000())
{
@@ -1523,7 +1523,7 @@ inline void m68ki_exception_privilege_violation()
/* Exception for A-Line instructions */
inline void m68ki_exception_1010()
{
- uint32_t sr;
+ u32 sr;
sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_1010);
@@ -1536,7 +1536,7 @@ inline void m68ki_exception_1010()
/* Exception for F-Line instructions */
inline void m68ki_exception_1111()
{
- uint32_t sr;
+ u32 sr;
sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_1111);
@@ -1549,7 +1549,7 @@ inline void m68ki_exception_1111()
/* Exception for illegal instructions */
inline void m68ki_exception_illegal()
{
- uint32_t sr;
+ u32 sr;
sr = m68ki_init_exception();
@@ -1568,7 +1568,7 @@ inline void m68ki_exception_illegal()
/* Exception for format errror in RTE */
inline void m68ki_exception_format_error()
{
- uint32_t sr = m68ki_init_exception();
+ u32 sr = m68ki_init_exception();
m68ki_stack_frame_0000(m_pc, sr, EXCEPTION_FORMAT_ERROR);
m68ki_jump_vector(EXCEPTION_FORMAT_ERROR);
@@ -1579,7 +1579,7 @@ inline void m68ki_exception_format_error()
/* Exception for address error */
inline void m68ki_exception_address_error()
{
- uint32_t sr = m68ki_init_exception();
+ u32 sr = m68ki_init_exception();
/* If we were processing a bus error, address error, or reset,
* this is a catastrophic failure.