1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// license:GPL-2.0+
// copyright-holders:Kevin Thacker,Sandro Ronco
/***************************************************************************
z88.cpp
Functions to emulate the video hardware of the Cambridge Z88
***************************************************************************/
#include "emu.h"
#include "includes/z88.h"
inline void z88_state::plot_pixel(bitmap_ind16 &bitmap, int x, int y, uint16_t color)
{
if (x < Z88_SCREEN_WIDTH)
bitmap.pix(y, x) = color;
}
/***************************************************************************
Start the video hardware emulation.
***************************************************************************/
// Initialise the palette
void z88_state::z88_palette(palette_device &palette) const
{
m_palette->set_pen_color(0, rgb_t(138, 146, 148));
m_palette->set_pen_color(1, rgb_t(92, 83, 88));
m_palette->set_pen_color(2, rgb_t(122, 126, 129));
}
/* temp - change to gfxelement structure */
void z88_state::vh_render_8x8(address_space &space, bitmap_ind16 &bitmap, int x, int y, uint16_t pen0, uint16_t pen1, uint32_t offset)
{
for (int h = 0; h < 8; h++)
{
const uint8_t data = space.read_byte(offset + h);
for (int b = 0; b < 8; b++)
{
plot_pixel(bitmap, x + b, y + h, BIT(data, 7 - b) ? pen1 : pen0);
}
}
}
void z88_state::vh_render_6x8(address_space &space, bitmap_ind16 &bitmap, int x, int y, uint16_t pen0, uint16_t pen1, uint32_t offset)
{
for (int h = 0; h < 8; h++)
{
const uint8_t data = space.read_byte(offset + h) << 2;
for (int b = 0; b < 6; b++)
{
plot_pixel(bitmap, x + 1 + b, y + h, BIT(data, 7 - b) ? pen1 : pen0);
}
}
}
void z88_state::vh_render_line(bitmap_ind16 &bitmap, int x, int y, uint16_t pen)
{
for (int i = 0; i < 8; i++)
{
plot_pixel(bitmap, x + i, y + 7, pen);
}
}
UPD65031_SCREEN_UPDATE(z88_state::lcd_update)
{
if (sbf == 0)
{
// LCD disabled
bitmap.fill(0);
}
else
{
address_space &space = m_banks[0]->space();
const uint32_t vram = sbf << 11;
for (int y = 0; y < (Z88_SCREEN_HEIGHT >> 3); y++)
{
int x = 0, c = 0;
while (x < Z88_SCREEN_WIDTH)
{
const uint8_t byte0 = space.read_byte(vram + (y * 0x100) + c);
const uint8_t byte1 = space.read_byte(vram + (y * 0x100) + c + 1);
// inverted graphics?
uint16_t pen0 = 0;
uint16_t pen1 = 0;
if (byte1 & Z88_SCR_HW_REV)
pen0 = (byte1 & Z88_SCR_HW_GRY) ? 2 : 1;
else
pen1 = (byte1 & Z88_SCR_HW_GRY) ? 2 : 1;
if ((byte1 & Z88_SCR_HW_NULL) == Z88_SCR_HW_NULL)
{
// hidden
}
else if (!(byte1 & Z88_SCR_HW_HRS) || (((byte1 & Z88_SCR_HW_CURS) == Z88_SCR_HW_CURS)))
{
// low-res 6x8
const uint16_t ch = (byte0 | (byte1 << 8)) & 0x1ff;
uint32_t char_offset;
if ((ch & 0x01c0) == 0x01c0)
char_offset = (lores0 << 9) + ((ch & 0x3f) << 3);
else
char_offset = (lores1 << 12) + (ch << 3);
// cursor flash
if (flash && (byte1 & Z88_SCR_HW_CURS) == Z88_SCR_HW_CURS)
vh_render_6x8(space, bitmap, x, y << 3, pen1, pen0, char_offset);
else
vh_render_6x8(space, bitmap, x, y << 3, pen0, pen1, char_offset);
// underline?
if (byte1 & Z88_SCR_HW_UND)
vh_render_line(bitmap, x, y << 3, pen1);
x += 6;
}
else if ((byte1 & Z88_SCR_HW_HRS) && !(byte1 & Z88_SCR_HW_REV))
{
// high-res 8x8
const uint16_t ch = (byte0 | (byte1 << 8)) & 0x3ff;
uint32_t char_offset;
if (BIT(ch, 8))
char_offset = (hires1 << 11) + ((ch & 0xff) << 3);
else
char_offset = (hires0 << 13) + ((ch & 0xff) << 3);
// flash
if ((byte1 & Z88_SCR_HW_FLS) && flash)
pen0 = pen1 = 0;
vh_render_8x8(space, bitmap, x, y << 3, pen0, pen1, char_offset);
x += 8;
}
// every char takes 2 bytes
c += 2;
}
}
}
}
|