1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
// license:BSD-3-Clause
// copyright-holders:Nicola Salmoria
#include "emu.h"
#include "includes/gberet.h"
/***************************************************************************
Convert the color PROMs into a more useable format.
Green Beret has a 32 bytes palette PROM and two 256 bytes color lookup table
PROMs (one for sprites, one for characters).
The palette PROM is connected to the RGB output, this way:
bit 7 -- 220 ohm resistor -- BLUE
-- 470 ohm resistor -- BLUE
-- 220 ohm resistor -- GREEN
-- 470 ohm resistor -- GREEN
-- 1 kohm resistor -- GREEN
-- 220 ohm resistor -- RED
-- 470 ohm resistor -- RED
bit 0 -- 1 kohm resistor -- RED
***************************************************************************/
void gberet_base_state::palette(palette_device &palette) const
{
uint8_t const *color_prom = memregion("proms")->base();
// create a lookup table for the palette
for (int i = 0; i < 0x20; i++)
{
// red component
int bit0 = BIT(color_prom[i], 0);
int bit1 = BIT(color_prom[i], 1);
int bit2 = BIT(color_prom[i], 2);
int const r = 0x21 * bit0 + 0x47 * bit1 + 0x97 * bit2;
// green component
bit0 = BIT(color_prom[i], 3);
bit1 = BIT(color_prom[i], 4);
bit2 = BIT(color_prom[i], 5);
int const g = 0x21 * bit0 + 0x47 * bit1 + 0x97 * bit2;
// blue component
bit0 = 0;
bit1 = BIT(color_prom[i], 6);
bit2 = BIT(color_prom[i], 7);
int const b = 0x21 * bit0 + 0x47 * bit1 + 0x97 * bit2;
palette.set_indirect_color(i, rgb_t(r, g, b));
}
// color_prom now points to the beginning of the lookup table
color_prom += 0x20;
for (int i = 0; i < 0x100; i++)
{
uint8_t const ctabentry = (color_prom[i] & 0x0f) | 0x10;
palette.set_pen_indirect(i, ctabentry);
}
for (int i = 0x100; i < 0x200; i++)
{
uint8_t const ctabentry = color_prom[i] & 0x0f;
palette.set_pen_indirect(i, ctabentry);
}
}
void gberet_base_state::videoram_w(offs_t offset, uint8_t data)
{
m_videoram[offset] = data;
m_bg_tilemap->mark_tile_dirty(offset);
}
void gberet_base_state::colorram_w(offs_t offset, uint8_t data)
{
m_colorram[offset] = data;
m_bg_tilemap->mark_tile_dirty(offset);
}
void gberet_state::scroll_w(offs_t offset, uint8_t data)
{
m_scrollram[offset] = data;
int scroll = m_scrollram[offset & 0x1f] | (m_scrollram[offset | 0x20] << 8);
m_bg_tilemap->set_scrollx(offset & 0x1f, scroll);
}
void gberet_state::sprite_bank_w(uint8_t data)
{
m_spritebank = data;
}
TILE_GET_INFO_MEMBER(gberet_base_state::get_bg_tile_info)
{
int attr = m_colorram[tile_index];
int code = m_videoram[tile_index] + ((attr & 0x40) << 2);
int color = attr & 0x0f;
int flags = TILE_FLIPYX((attr & 0x30) >> 4);
tileinfo.group = color;
tileinfo.category = (attr & 0x80) >> 7;
tileinfo.set(0, code, color, flags);
}
void gberet_base_state::video_start()
{
m_bg_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(*this, FUNC(gberet_state::get_bg_tile_info)), TILEMAP_SCAN_ROWS, 8, 8, 64, 32);
m_bg_tilemap->configure_groups(*m_gfxdecode->gfx(0), 0x10);
m_bg_tilemap->set_scroll_rows(32);
}
void gberet_state::draw_sprites( bitmap_ind16 &bitmap, const rectangle &cliprect )
{
uint8_t *sr;
if (m_spritebank & 0x08)
sr = m_spriteram2;
else
sr = m_spriteram;
for (int offs = 0; offs < 0xc0; offs += 4)
{
if (sr[offs + 3])
{
int attr = sr[offs + 1];
int code = sr[offs + 0] + ((attr & 0x40) << 2);
int color = attr & 0x0f;
int sx = sr[offs + 2] - 2 * (attr & 0x80);
int sy = sr[offs + 3];
int flipx = attr & 0x10;
int flipy = attr & 0x20;
if (flip_screen())
{
sx = 240 - sx;
sy = 240 - sy;
flipx = !flipx;
flipy = !flipy;
}
m_gfxdecode->gfx(1)->transmask(bitmap,cliprect, code, color, flipx, flipy, sx, sy,
m_palette->transpen_mask(*m_gfxdecode->gfx(1), color, 0));
}
}
}
uint32_t gberet_state::screen_update(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
m_bg_tilemap->draw(screen, bitmap, cliprect, TILEMAP_DRAW_OPAQUE | TILEMAP_DRAW_ALL_CATEGORIES, 0);
draw_sprites(bitmap, cliprect);
m_bg_tilemap->draw(screen, bitmap, cliprect, 0, 0);
return 0;
}
// Green Beret (bootleg)
void gberetb_state::scroll_w(offs_t offset, uint8_t data)
{
int scroll = data;
if (offset)
scroll |= 0x100;
for (offset = 6; offset < 29; offset++)
m_bg_tilemap->set_scrollx(offset, scroll + 64 - 8);
}
void gberetb_state::draw_sprites( bitmap_ind16 &bitmap, const rectangle &cliprect )
{
for (int offs = m_spriteram.bytes() - 4; offs >= 0; offs -= 4)
{
if (m_spriteram[offs + 1])
{
int attr = m_spriteram[offs + 3];
int code = m_spriteram[offs] + ((attr & 0x40) << 2);
int color = attr & 0x0f;
int sx = m_spriteram[offs + 2] - 2 * (attr & 0x80);
int sy = 240 - m_spriteram[offs + 1];
int flipx = attr & 0x10;
int flipy = attr & 0x20;
if (flip_screen())
{
sx = 240 - sx;
sy = 240 - sy;
flipx = !flipx;
flipy = !flipy;
}
m_gfxdecode->gfx(1)->transmask(bitmap,cliprect, code, color, flipx, flipy, sx, sy,
m_palette->transpen_mask(*m_gfxdecode->gfx(1), color, 0));
}
}
}
uint32_t gberetb_state::screen_update(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect)
{
m_bg_tilemap->draw(screen, bitmap, cliprect, TILEMAP_DRAW_OPAQUE | TILEMAP_DRAW_ALL_CATEGORIES, 0);
draw_sprites(bitmap, cliprect);
m_bg_tilemap->draw(screen, bitmap, cliprect, 0, 0);
return 0;
}
|