summaryrefslogtreecommitdiffstats
path: root/docs/release/src/frontend/mame/language.cpp
blob: ee149a63e3b1066f7ee4cd284b5707ac92432536 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// license:BSD-3-Clause
// copyright-holders:Vas Crabb
/***************************************************************************

    language.cpp

    Multi-language support.

***************************************************************************/

#include "emu.h"
#include "emuopts.h"

#include <cstring>
#include <memory>
#include <new>
#include <unordered_map>


namespace {

constexpr uint32_t MO_MAGIC = 0x950412de;
constexpr uint32_t MO_MAGIC_REVERSED = 0xde120495;

struct cstr_hash
{
	size_t operator()(char const *s) const noexcept
	{
		// Bernstein string hash
		size_t result(5381);
		while (*s)
			result = ((result << 5) + result) + u8(*s++);
		return result;
	}
};

struct cstr_compare
{
	size_t operator()(char const *x, char const *y) const noexcept
	{
		return !std::strcmp(x, y);
	}
};

std::unique_ptr<u32 []> f_translation_data;
std::unordered_map<char const *, char const *, cstr_hash, cstr_compare> f_translation_map;

} // anonymous namespace


char const *lang_translate(char const *word)
{
	auto const found = f_translation_map.find(word);
	return (f_translation_map.end() != found) ? found->second : word;
}


void load_translation(emu_options &m_options)
{
	f_translation_data.reset();
	f_translation_map.clear();

	std::string name = m_options.language();
	if (name.empty())
		return;

	strreplace(name, " ", "_");
	strreplace(name, "(", "");
	strreplace(name, ")", "");

	// MESSUI: See if language file exists. If not, try English, see if that exists. If not, use inbuilt default.
	emu_file file(m_options.language_path(), OPEN_FLAG_READ);
	if (file.open(name.c_str(), PATH_SEPARATOR "strings.mo") != osd_file::error::NONE)
	{
		osd_printf_verbose("Error opening translation file %s\n", name);
		name = "English";
		if (file.open(name.c_str(), PATH_SEPARATOR "strings.mo") != osd_file::error::NONE)
		{
			osd_printf_verbose("Error opening translation file %s\n", name);
			return;
		}
	}

	u64 const size = file.size();
	if (20 > size)
	{
		file.close();
		osd_printf_error("Error reading translation file %s: %u-byte file is too small to contain translation data\n", name, size);
		return;
	}

	f_translation_data.reset(new (std::nothrow) uint32_t [(size + 3) / 4]);
	if (!f_translation_data)
	{
		file.close();
		osd_printf_error("Failed to allocate %u bytes to load translation data file %s\n", size, name);
		return;
	}

	auto const read = file.read(f_translation_data.get(), size);
	file.close();
	if (read != size)
	{
		osd_printf_error("Error reading translation file %s: requested %u bytes but got %u bytes\n", name, size, read);
		f_translation_data.reset();
		return;
	}

	if ((f_translation_data[0] != MO_MAGIC) && (f_translation_data[0] != MO_MAGIC_REVERSED))
	{
		osd_printf_error("Error reading translation file %s: unrecognized magic number 0x%08X\n", name, f_translation_data[0]);
		f_translation_data.reset();
		return;
	}

	auto fetch_word =
			[reversed = f_translation_data[0] == MO_MAGIC_REVERSED, words = f_translation_data.get()] (size_t offset)
			{
				return reversed ? swapendian_int32(words[offset]) : words[offset];
			};

	// FIXME: check major/minor version number

	if ((fetch_word(3) % 4) || (fetch_word(4) % 4))
	{
		osd_printf_error("Error reading translation file %s: table offsets %u and %u are not word-aligned\n", name, fetch_word(3), fetch_word(4));
		f_translation_data.reset();
		return;
	}

	u32 const number_of_strings = fetch_word(2);
	u32 const original_table_offset = fetch_word(3) >> 2;
	u32 const translation_table_offset = fetch_word(4) >> 2;
	if ((4 * (original_table_offset + (u64(number_of_strings) * 2))) > size)
	{
		osd_printf_error("Error reading translation file %s: %u-entry original string table at offset %u extends past end of %u-byte file\n", name, number_of_strings, fetch_word(3), size);
		f_translation_data.reset();
		return;
	}
	if ((4 * (translation_table_offset + (u64(number_of_strings) * 2))) > size)
	{
		osd_printf_error("Error reading translation file %s: %u-entry translated string table at offset %u extends past end of %u-byte file\n", name, number_of_strings, fetch_word(4), size);
		f_translation_data.reset();
		return;
	}
	osd_printf_verbose("Reading translation file %s: %u strings, original table at word offset %u, translated table at word offset %u\n", name, number_of_strings, original_table_offset, translation_table_offset);

	char const *const data = reinterpret_cast<char const *>(f_translation_data.get());
	for (u32 i = 1; number_of_strings > i; ++i)
	{
		u32 const original_length = fetch_word(original_table_offset + (2 * i));
		u32 const original_offset = fetch_word(original_table_offset + (2 * i) + 1);
		if ((original_length + original_offset) >= size)
		{
			osd_printf_error("Error reading translation file %s: %u-byte original string %u at offset %u extends past end of %u-byte file\n", name, original_length, i, original_offset, size);
			continue;
		}
		if (data[original_length + original_offset])
		{
			osd_printf_error("Error reading translation file %s: %u-byte original string %u at offset %u is not correctly NUL-terminated\n", name, original_length, i, original_offset);
			continue;
		}

		u32 const translation_length = fetch_word(translation_table_offset + (2 * i));
		u32 const translation_offset = fetch_word(translation_table_offset + (2 * i) + 1);
		if ((translation_length + translation_offset) >= size)
		{
			osd_printf_error("Error reading translation file %s: %u-byte translated string %u at offset %u extends past end of %u-byte file\n", name, translation_length, i, translation_offset, size);
			continue;
		}
		if (data[translation_length + translation_offset])
		{
			osd_printf_error("Error reading translation file %s: %u-byte translated string %u at offset %u is not correctly NUL-terminated\n", name, translation_length, i, translation_offset);
			continue;
		}

		char const *const original = &data[original_offset];
		char const *const translation = &data[translation_offset];
		auto const ins = f_translation_map.emplace(original, translation);
		if (!ins.second)
			osd_printf_warning("Loading translation file %s: translation %u '%s'='%s' conflicts with previous translation '%s'='%s'\n", name, i, original, translation, ins.first->first, ins.first->second);
	}

	osd_printf_verbose("Loaded %u translations from file %s\n", f_translation_map.size(), name);
}
w)); save_item(NAME(m_ppc.w)); save_item(NAME(m_q.q)); save_item(NAME(m_dp)); save_item(NAME(m_u.w)); save_item(NAME(m_s.w)); save_item(NAME(m_x.w)); save_item(NAME(m_y.w)); save_item(NAME(m_cc)); save_item(NAME(m_temp.w)); save_item(NAME(m_opcode)); save_item(NAME(m_nmi_asserted)); save_item(NAME(m_nmi_line)); save_item(NAME(m_firq_line)); save_item(NAME(m_irq_line)); save_item(NAME(m_lds_encountered)); save_item(NAME(m_state)); save_item(NAME(m_ea.w)); save_item(NAME(m_addressing_mode)); save_item(NAME(m_reg)); save_item(NAME(m_cond)); // set our instruction counter m_icountptr = &m_icount; m_icount = 0; } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void m6809_base_device::device_reset() { m_nmi_line = false; m_nmi_asserted = false; m_firq_line = false; m_irq_line = false; m_lds_encountered = false; m_dp = 0x00; // reset direct page register m_cc |= CC_I; // IRQ disabled m_cc |= CC_F; // FIRQ disabled m_pc.b.h = space(AS_PROGRAM).read_byte(VECTOR_RESET_FFFE + 0); m_pc.b.l = space(AS_PROGRAM).read_byte(VECTOR_RESET_FFFE + 1); // reset sub-instruction state reset_state(); } //------------------------------------------------- // device_pre_save - device-specific pre-save //------------------------------------------------- void m6809_base_device::device_pre_save() { if (m_reg8 == &m_q.r.a) m_reg = M6809_A; else if (m_reg8 == &m_q.r.b) m_reg = M6809_B; else if (m_reg16 == &m_q.p.d) m_reg = M6809_D; else if (m_reg16 == &m_x) m_reg = M6809_X; else if (m_reg16 == &m_y) m_reg = M6809_Y; else if (m_reg16 == &m_u) m_reg = M6809_U; else if (m_reg16 == &m_s) m_reg = M6809_S; else m_reg = 0; } //------------------------------------------------- // device_post_load - device-specific post-load //------------------------------------------------- void m6809_base_device::device_post_load() { m_reg8 = nullptr; m_reg16 = nullptr; switch(m_reg) { case M6809_A: set_regop8(m_q.r.a); break; case M6809_B: set_regop8(m_q.r.b); break; case M6809_D: set_regop16(m_q.p.d); break; case M6809_X: set_regop16(m_x); break; case M6809_Y: set_regop16(m_y); break; case M6809_U: set_regop16(m_u); break; case M6809_S: set_regop16(m_s); break; } } //------------------------------------------------- // memory_space_config - return the configuration // of the specified address space, or nullptr if // the space doesn't exist //------------------------------------------------- const address_space_config *m6809_base_device::memory_space_config(address_spacenum spacenum) const { switch(spacenum) { case AS_PROGRAM: return &m_program_config; case AS_DECRYPTED_OPCODES: return has_configured_map(AS_DECRYPTED_OPCODES) ? &m_sprogram_config : nullptr; default: return nullptr; } } //------------------------------------------------- // state_string_export - export state as a string // for the debugger //------------------------------------------------- void m6809_base_device::state_string_export(const device_state_entry &entry, std::string &str) const { switch (entry.index()) { case STATE_GENFLAGS: str = string_format("%c%c%c%c%c%c%c%c", (m_cc & 0x80) ? 'E' : '.', (m_cc & 0x40) ? 'F' : '.', (m_cc & 0x20) ? 'H' : '.', (m_cc & 0x10) ? 'I' : '.', (m_cc & 0x08) ? 'N' : '.', (m_cc & 0x04) ? 'Z' : '.', (m_cc & 0x02) ? 'V' : '.', (m_cc & 0x01) ? 'C' : '.'); break; } } //------------------------------------------------- // disasm_min_opcode_bytes - return the length // of the shortest instruction, in bytes //------------------------------------------------- UINT32 m6809_base_device::disasm_min_opcode_bytes() const { return 1; } //------------------------------------------------- // disasm_max_opcode_bytes - return the length // of the longest instruction, in bytes //------------------------------------------------- UINT32 m6809_base_device::disasm_max_opcode_bytes() const { return 5; } //------------------------------------------------- // disasm_disassemble - call the disassembly // helper function //------------------------------------------------- offs_t m6809_base_device::disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options) { extern CPU_DISASSEMBLE( m6809 ); return CPU_DISASSEMBLE_NAME(m6809)(this, buffer, pc, oprom, opram, options); } //************************************************************************** // CORE EXECUTION LOOP //************************************************************************** //------------------------------------------------- // execute_clocks_to_cycles - convert the raw // clock into cycles per second //------------------------------------------------- UINT64 m6809_base_device::execute_clocks_to_cycles(UINT64 clocks) const { return (clocks + m_clock_divider - 1) / m_clock_divider; } //------------------------------------------------- // execute_cycles_to_clocks - convert a cycle // count back to raw clocks //------------------------------------------------- UINT64 m6809_base_device::execute_cycles_to_clocks(UINT64 cycles) const { return cycles * m_clock_divider; } //------------------------------------------------- // execute_min_cycles - return minimum number of // cycles it takes for one instruction to execute //------------------------------------------------- UINT32 m6809_base_device::execute_min_cycles() const { return 1; } //------------------------------------------------- // execute_max_cycles - return maximum number of // cycles it takes for one instruction to execute //------------------------------------------------- UINT32 m6809_base_device::execute_max_cycles() const { return 19; } //------------------------------------------------- // execute_input_lines - return the number of // input/interrupt lines //------------------------------------------------- UINT32 m6809_base_device::execute_input_lines() const { return 3; } //------------------------------------------------- // execute_set_input - act on a changed input/ // interrupt line //------------------------------------------------- void m6809_base_device::execute_set_input(int inputnum, int state) { if (LOG_INTERRUPTS) logerror("%s: inputnum=%s state=%d totalcycles=%d\n", machine().describe_context(), inputnum_string(inputnum), state, (int) attotime_to_clocks(machine().time())); switch(inputnum) { case INPUT_LINE_NMI: // NMI is edge triggered m_nmi_asserted = m_nmi_asserted || ((state != CLEAR_LINE) && !m_nmi_line && m_lds_encountered); m_nmi_line = (state != CLEAR_LINE); break; case M6809_FIRQ_LINE: // FIRQ is line triggered m_firq_line = (state != CLEAR_LINE); break; case M6809_IRQ_LINE: // IRQ is line triggered m_irq_line = (state != CLEAR_LINE); break; } } //------------------------------------------------- // inputnum_string //------------------------------------------------- const char *m6809_base_device::inputnum_string(int inputnum) { switch(inputnum) { case INPUT_LINE_NMI: return "NMI"; case M6809_FIRQ_LINE: return "FIRQ"; case M6809_IRQ_LINE: return "IRQ"; default: return "???"; } } //------------------------------------------------- // read_exgtfr_register //------------------------------------------------- m6809_base_device::exgtfr_register m6809_base_device::read_exgtfr_register(UINT8 reg) { exgtfr_register result; result.byte_value = 0xFF; result.word_value = 0x00FF; switch(reg & 0x0F) { case 0: result.word_value = m_q.r.d; break; // D case 1: result.word_value = m_x.w; break; // X case 2: result.word_value = m_y.w; break; // Y case 3: result.word_value = m_u.w; break; // U case 4: result.word_value = m_s.w; break; // S case 5: result.word_value = m_pc.w; break; // PC case 8: result.byte_value = m_q.r.a; break; // A case 9: result.byte_value = m_q.r.b; break; // B case 10: result.byte_value = m_cc; break; // CC case 11: result.byte_value = m_dp; break; // DP } return result; } //------------------------------------------------- // write_exgtfr_register //------------------------------------------------- void m6809_base_device::write_exgtfr_register(UINT8 reg, m6809_base_device::exgtfr_register value) { switch(reg & 0x0F) { case 0: m_q.r.d = value.word_value; break; // D case 1: m_x.w = value.word_value; break; // X case 2: m_y.w = value.word_value; break; // Y case 3: m_u.w = value.word_value; break; // U case 4: m_s.w = value.word_value; break; // S case 5: m_pc.w = value.word_value; break; // PC case 8: m_q.r.a = value.byte_value; break; // A case 9: m_q.r.b = value.byte_value; break; // B case 10: m_cc = value.byte_value; break; // CC case 11: m_dp = value.byte_value; break; // DP } } //------------------------------------------------- // log_illegal - used to log hits to illegal // instructions (except for HD6309 which traps) //------------------------------------------------- void m6809_base_device::log_illegal() { logerror("%s: illegal opcode at %04x\n", machine().describe_context(), (unsigned) m_pc.w); } //------------------------------------------------- // execute_one - try to execute a single instruction //------------------------------------------------- void m6809_base_device::execute_one() { switch(pop_state()) { #include "cpu/m6809/m6809.hxx" } } //------------------------------------------------- // execute_run - execute a timeslice's worth of // opcodes //------------------------------------------------- void m6809_base_device::execute_run() { do { execute_one(); } while(m_icount > 0); } UINT8 m6809_base_device::mi_default::read(UINT16 adr) { return m_program->read_byte(adr); } UINT8 m6809_base_device::mi_default::read_opcode(UINT16 adr) { return m_sdirect->read_byte(adr); } UINT8 m6809_base_device::mi_default::read_opcode_arg(UINT16 adr) { return m_direct->read_byte(adr); } void m6809_base_device::mi_default::write(UINT16 adr, UINT8 val) { m_program->write_byte(adr, val); } //------------------------------------------------- // m6809_device //------------------------------------------------- m6809_device::m6809_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : m6809_base_device(mconfig, "M6809", tag, owner, clock, M6809, 1, "m6809", __FILE__) { } //------------------------------------------------- // m6809e_device //------------------------------------------------- m6809e_device::m6809e_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : m6809_base_device(mconfig, "M6809E", tag, owner, clock, M6809E, 4, "m6809e", __FILE__) { }