// license:BSD-3-Clause // copyright-holders:Ville Linde // Konami 0000057714 "GCU" 2D Graphics Chip #include "emu.h" #include "k057714.h" #include "screen.h" #define DUMP_VRAM 0 #define LOG_GENERAL (1 << 0) #define LOG_REGISTER (1 << 1) #define LOG_FIFO (1 << 2) #define LOG_CMDEXEC (1 << 3) #define LOG_DRAW (1 << 4) // #define VERBOSE (LOG_GENERAL | LOG_REGISTER | LOG_FIFO | LOG_CMDEXEC | LOG_DRAW) // #define LOG_OUTPUT_STREAM std::cout #include "logmacro.h" #define LOGREGISTER(...) LOGMASKED(LOG_REGISTER, __VA_ARGS__) #define LOGFIFO(...) LOGMASKED(LOG_FIFO, __VA_ARGS__) #define LOGCMDEXEC(...) LOGMASKED(LOG_CMDEXEC, __VA_ARGS__) #define LOGDRAW(...) LOGMASKED(LOG_DRAW, __VA_ARGS__) DEFINE_DEVICE_TYPE(K057714, k057714_device, "k057714", "k057714_device GCU") k057714_device::k057714_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : device_t(mconfig, K057714, tag, owner, clock) , device_video_interface(mconfig, *this) , m_irq(*this) { } void k057714_device::device_start() { m_irq.resolve_safe(); m_vram = std::make_unique(VRAM_SIZE/4); save_pointer(NAME(m_vram), VRAM_SIZE/4); save_item(NAME(m_vram_read_addr)); save_item(NAME(m_vram_fifo0_addr)); save_item(NAME(m_vram_fifo1_addr)); save_item(NAME(m_vram_fifo0_mode)); save_item(NAME(m_vram_fifo1_mode)); save_item(NAME(m_command_fifo0)); save_item(NAME(m_command_fifo0_ptr)); save_item(NAME(m_command_fifo1)); save_item(NAME(m_command_fifo1_ptr)); save_item(NAME(m_ext_fifo_addr)); save_item(NAME(m_ext_fifo_count)); save_item(NAME(m_ext_fifo_line)); save_item(NAME(m_ext_fifo_num_lines)); save_item(NAME(m_ext_fifo_width)); save_item(STRUCT_MEMBER(m_frame, base)); save_item(STRUCT_MEMBER(m_frame, width)); save_item(STRUCT_MEMBER(m_frame, height)); save_item(STRUCT_MEMBER(m_frame, x)); save_item(STRUCT_MEMBER(m_frame, y)); save_item(STRUCT_MEMBER(m_frame, alpha)); save_item(NAME(m_fb_origin_x)); save_item(NAME(m_fb_origin_y)); save_item(NAME(m_layer_select)); save_item(NAME(m_reg_6c)); save_item(NAME(m_display_h_visarea)); save_item(NAME(m_display_h_frontporch)); save_item(NAME(m_display_h_backporch)); save_item(NAME(m_display_h_syncpulse)); save_item(NAME(m_display_v_visarea)); save_item(NAME(m_display_v_frontporch)); save_item(NAME(m_display_v_backporch)); save_item(NAME(m_display_v_syncpulse)); save_item(NAME(m_pixclock)); } void k057714_device::device_reset() { // Default display width/height are a guess. // All Firebeat games except beatmania III, which uses 640x480, will set the // display width/height through registers. // The assumption here is that since beatmania III doesn't set the display width/height // then the game is assuming that it's already at the correct settings upon boot. // Timing information taken from table found in all Firebeat games. // table idx (h vis area, front porch, sync pulse, back porch, h total) (v vis area, front porch, sync pulse, back porch, v total) // 0 (640, 16, 96, 48 = 800) (480, 10, 2, 33 = 525) // 1 (512, 5, 96, 72 = 685) (384, 6, 4, 22 = 416) // 2 (800, 40, 128, 88 = 1056) (600, 1, 4, 23 = 628) // 3 (640, 20, 23, 165 = 848) (384, 6, 1, 27 = 418) // 4 (640, 10, 21, 10 = 681) (480, 10, 2, 33 = 525) m_display_h_visarea = 640; m_display_h_frontporch = 16; m_display_h_backporch = 48; m_display_h_syncpulse = 96; m_display_v_visarea = 480; m_display_v_frontporch = 10; m_display_v_backporch = 33; m_display_v_syncpulse = 2; m_pixclock = 25'175'000; // 25.175_MHz_XTAL, default for Firebeat but maybe not other machiness. The value can be changed externally crtc_set_screen_params(); m_vram_read_addr = 0; m_command_fifo0_ptr = 0; m_command_fifo1_ptr = 0; m_vram_fifo0_addr = 0; m_vram_fifo1_addr = 0; m_fb_origin_x = 0; m_fb_origin_y = 0; m_reg_6c = 0; for (auto & elem : m_frame) { elem.base = 0; elem.width = 0; elem.height = 0; elem.alpha = (16 << 7) | (16 << 2); // Set alpha 1 and 2 to 16 (100%) and blend mode to 0 } memset(m_vram.get(), 0, VRAM_SIZE); } void k057714_device::device_stop() { #if DUMP_VRAM char filename[200]; sprintf(filename, "%s_vram.bin", basetag()); printf("dumping %s\n", filename); FILE *file = fopen(filename, "wb"); int i; for (i=0; i < VRAM_SIZE/4; i++) { fputc((m_vram[i] >> 24) & 0xff, file); fputc((m_vram[i] >> 16) & 0xff, file); fputc((m_vram[i] >> 8) & 0xff, file); fputc((m_vram[i] >> 0) & 0xff, file); } fclose(file); #endif } void k057714_device::set_pixclock(const XTAL &xtal) { xtal.validate(std::string("Setting pixel clock for ") + tag()); m_pixclock = xtal.value(); crtc_set_screen_params(); } inline void k057714_device::crtc_set_screen_params() { auto htotal = m_display_h_visarea + m_display_h_frontporch + m_display_h_backporch + m_display_h_syncpulse; auto vtotal = m_display_v_visarea + m_display_v_frontporch + m_display_v_backporch + m_display_v_syncpulse; rectangle visarea(0, m_display_h_visarea - 1, 0, m_display_v_visarea - 1); screen().configure(htotal, vtotal, visarea, HZ_TO_ATTOSECONDS(m_pixclock) * htotal * vtotal); } uint32_t k057714_device::read(offs_t offset) { int reg = offset * 4; // VRAM Read if (reg >= 0x80 && reg < 0x100) { return m_vram[m_vram_read_addr + offset - 0x20]; } switch (reg) { case 0x78: // GCU Status /* ppd checks bits 0x0041 of the upper halfword on interrupt */ return 0xffff0005; default: break; } return 0xffffffff; } void k057714_device::write(offs_t offset, uint32_t data, uint32_t mem_mask) { int reg = offset * 4; switch (reg) { case 0x00: if (ACCESSING_BITS_16_31) { m_display_h_visarea = ((data >> 16) & 0xffff) + 1; } if (ACCESSING_BITS_0_15) { m_display_h_frontporch = ((data >> 8) & 0xff) + 1; m_display_h_backporch = (data & 0xff) + 1; } crtc_set_screen_params(); break; case 0x04: if (ACCESSING_BITS_16_31) { m_display_v_visarea = ((data >> 16) & 0xffff) + 1; } if (ACCESSING_BITS_0_15) { m_display_v_frontporch = ((data >> 8) & 0xff) + 1; m_display_v_backporch = (data & 0xff) + 1; } crtc_set_screen_params(); break; case 0x08: if (ACCESSING_BITS_16_31) { m_display_h_syncpulse = ((data >> 24) & 0xff) + 1; m_display_v_syncpulse = ((data >> 16) & 0xff) + 1; crtc_set_screen_params(); } break; case 0x10: /* IRQ clear/enable; ppd writes bit off then on in response to interrupt */ /* it enables bits 0x41, but 0x01 seems to be the one it cares about */ if (ACCESSING_BITS_16_31 && (data & 0x00010000) == 0) { if (!m_irq.isnull()) { m_irq(CLEAR_LINE); } } if (ACCESSING_BITS_0_15) { m_layer_select = data; LOGREGISTER("%s_w: %02X, %08X, %08X\n", basetag(), reg, data, mem_mask); } break; case 0x14: // Framebuffer 0/1 alpha values if (ACCESSING_BITS_16_31) m_frame[0].alpha = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[1].alpha = data & 0xffff; break; case 0x18: // Framebuffer 0/1 alpha values if (ACCESSING_BITS_16_31) m_frame[2].alpha = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[3].alpha = data & 0xffff; break; case 0x1c: // set to 1 on "media bus" access if ((data >> 16) == 1) { m_ext_fifo_count = 0; m_ext_fifo_line = 0; } break; case 0x20: // Framebuffer 0 Origin(?) if (ACCESSING_BITS_16_31) m_frame[0].y = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[0].x = data & 0xffff; break; case 0x24: // Framebuffer 1 Origin(?) if (ACCESSING_BITS_16_31) m_frame[1].y = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[1].x = data & 0xffff; break; case 0x28: // Framebuffer 2 Origin(?) if (ACCESSING_BITS_16_31) m_frame[2].y = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[2].x = data & 0xffff; break; case 0x2c: // Framebuffer 3 Origin(?) if (ACCESSING_BITS_16_31) m_frame[3].y = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[3].x = data & 0xffff; break; case 0x30: // Framebuffer 0 Dimensions if (ACCESSING_BITS_16_31) m_frame[0].height = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[0].width = data & 0xffff; LOGREGISTER("%s FB0 Dimensions: W %04X, H %04X\n", basetag(), data & 0xffff, (data >> 16) & 0xffff); break; case 0x34: // Framebuffer 1 Dimensions if (ACCESSING_BITS_16_31) m_frame[1].height = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[1].width = data & 0xffff; LOGREGISTER("%s FB1 Dimensions: W %04X, H %04X\n", basetag(), data & 0xffff, (data >> 16) & 0xffff); break; case 0x38: // Framebuffer 2 Dimensions if (ACCESSING_BITS_16_31) m_frame[2].height = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[2].width = data & 0xffff; LOGREGISTER("%s FB2 Dimensions: W %04X, H %04X\n", basetag(), data & 0xffff, (data >> 16) & 0xffff); break; case 0x3c: // Framebuffer 3 Dimensions if (ACCESSING_BITS_16_31) m_frame[3].height = (data >> 16) & 0xffff; if (ACCESSING_BITS_0_15) m_frame[3].width = data & 0xffff; LOGREGISTER("%s FB3 Dimensions: W %04X, H %04X\n", basetag(), data & 0xffff, (data >> 16) & 0xffff); break; case 0x40: // Framebuffer 0 Base m_frame[0].base = data; LOGREGISTER("%s FB0 Base: %08X\n", basetag(), data); break; case 0x44: // Framebuffer 1 Base m_frame[1].base = data; LOGREGISTER("%s FB1 Base: %08X\n", basetag(), data); break; case 0x48: // Framebuffer 2 Base m_frame[2].base = data; LOGREGISTER("%s FB2 Base: %08X\n", basetag(), data); break; case 0x4c: // Framebuffer 3 Base m_frame[3].base = data; LOGREGISTER("%s FB3 Base: %08X\n", basetag(), data); break; case 0x54: if (ACCESSING_BITS_16_31) m_ext_fifo_num_lines = data >> 16; if (ACCESSING_BITS_0_15) m_ext_fifo_width = data & 0xffff; break; case 0x58: m_ext_fifo_addr = (data & 0xffffff); break; case 0x5c: // VRAM Read Address m_vram_read_addr = (data & 0xffffff) / 2; break; case 0x60: // VRAM Port 0 Write Address m_vram_fifo0_addr = (data & 0xffffff) / 2; break; case 0x68: // VRAM Port 0/1 Mode if (ACCESSING_BITS_16_31) m_vram_fifo0_mode = data >> 16; if (ACCESSING_BITS_0_15) m_vram_fifo1_mode = data & 0xffff; break; case 0x70: // VRAM Port 0 Write FIFO if (m_vram_fifo0_mode & 0x100) { // write to command fifo m_command_fifo0[m_command_fifo0_ptr] = data; m_command_fifo0_ptr++; // execute when filled if (m_command_fifo0_ptr >= 4) { LOGFIFO("GCU FIFO0 exec: %08X %08X %08X %08X\n", m_command_fifo0[0], m_command_fifo0[1], m_command_fifo0[2], m_command_fifo0[3]); execute_command(m_command_fifo0); m_command_fifo0_ptr = 0; } } else { // write to VRAM fifo m_vram[m_vram_fifo0_addr] = data; m_vram_fifo0_addr++; } break; case 0x64: // VRAM Port 1 Write Address m_vram_fifo1_addr = (data & 0xffffff) / 2; break; case 0x74: // VRAM Port 1 Write FIFO if (m_vram_fifo1_mode & 0x100) { // write to command fifo m_command_fifo1[m_command_fifo1_ptr] = data; m_command_fifo1_ptr++; // execute when filled if (m_command_fifo1_ptr >= 4) { LOGFIFO("GCU FIFO1 exec: %08X %08X %08X %08X\n", m_command_fifo1[0], m_command_fifo1[1], m_command_fifo1[2], m_command_fifo1[3]); execute_command(m_command_fifo1); m_command_fifo1_ptr = 0; } } else { // write to VRAM fifo m_vram[m_vram_fifo1_addr] = data; m_vram_fifo1_addr++; } break; case 0x6c: if (ACCESSING_BITS_0_15) { m_reg_6c = data & 0xffff; } break; default: LOGREGISTER("%s_w: %02X, %08X, %08X\n", basetag(), reg, data, mem_mask); break; } } void k057714_device::fifo_w(offs_t offset, uint32_t data, uint32_t mem_mask) { if (ACCESSING_BITS_16_31) { if (m_ext_fifo_count != 0) // first access is a dummy write { int count = m_ext_fifo_count - 1; uint32_t addr = (((m_ext_fifo_addr >> 10) + m_ext_fifo_line) * 1024) + count; if ((count & 1) == 0) { m_vram[addr >> 1] &= 0x0000ffff; m_vram[addr >> 1] |= (data & 0xffff0000); } else { m_vram[addr >> 1] &= 0xffff0000; m_vram[addr >> 1] |= (data >> 16); } } m_ext_fifo_count++; if (m_ext_fifo_count > m_ext_fifo_width+1) { m_ext_fifo_line++; m_ext_fifo_count = 0; } } } void k057714_device::draw_frame(int frame, bitmap_ind16 &bitmap, const rectangle &cliprect, bool inverse_trans) { if (m_frame[frame].height == 0 || m_frame[frame].width == 0) return; int height = m_frame[frame].height + 1; int width = m_frame[frame].width + 1; int alpha = m_frame[frame].alpha; int blend_mode = alpha & 3; int alpha1 = (alpha >> 7) & 0x1f; // beatmania III uses this for blend mode 1 int alpha2 = (alpha >> 2) & 0x1f; // But pop'n music has alpha 1 and 2 the same for blend mode 1 if (blend_mode == 2) { alpha1 = (alpha2 * 16) / alpha1; } uint16_t *vram16 = (uint16_t*)m_vram.get(); int fb_pitch = 1024; uint16_t trans_value = inverse_trans ? 0x8000 : 0x0000; if (m_frame[frame].y + height > cliprect.max_y) height = cliprect.max_y - m_frame[frame].y; if (m_frame[frame].x + width > cliprect.max_x) width = cliprect.max_x - m_frame[frame].x; for (int j = 0; j <= height; j++) { uint16_t *const d = &bitmap.pix(j + m_frame[frame].y, m_frame[frame].x); int li = (j * fb_pitch); for (int i = 0; i <= width; i++) { uint16_t pix = vram16[(m_frame[frame].base + li + i) ^ NATIVE_ENDIAN_VALUE_LE_BE(1, 0)]; if ((pix & 0x8000) != trans_value) { uint32_t r = (pix >> 10) & 0x1f; uint32_t g = (pix >> 5) & 0x1f; uint32_t b = (pix >> 0) & 0x1f; r = (r * alpha1) >> 4; g = (g * alpha1) >> 4; b = (b * alpha1) >> 4; if (r > 0x1f) r = 0x1f; if (g > 0x1f) g = 0x1f; if (b > 0x1f) b = 0x1f; d[i] = (r << 10) | (g << 5) | b; } } } } int k057714_device::draw(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect) { bitmap.fill(0, cliprect); bool inverse_trans = false; // most likely wrong, inverse transparency is only used by kbm // beatmania III sets m_reg_6c to 0xfff but it doesn't use inverse transparency if ((m_reg_6c & 0xf) != 0 && m_reg_6c != 0xfff) inverse_trans = true; draw_frame((m_layer_select >> 8) & 3, bitmap, cliprect, inverse_trans); draw_frame((m_layer_select >> 10) & 3, bitmap, cliprect, inverse_trans); draw_frame((m_layer_select >> 12) & 3, bitmap, cliprect, inverse_trans); draw_frame((m_layer_select >> 14) & 3, bitmap, cliprect, inverse_trans); return 0; } void k057714_device::draw_object(uint32_t *cmd) { // 0x00: -------- -------- ------xx xxxxxxxx ram x // 0x00: -------- xxxxxxxx xxxxxx-- -------- ram y // 0x00: ---x---- -------- -------- -------- 0: absolute coordinates // 1: relative coordinates from framebuffer origin // 0x00: xxx----- -------- -------- -------- command (always 5) // 0x01: -------- -------- ------xx xxxxxxxx object x // 0x01: -------- xxxxxxxx xxxxxx-- -------- object y // 0x01: -----x-- -------- -------- -------- object x flip // 0x01: ----x--- -------- -------- -------- object y flip // 0x01: --xx---- -------- -------- -------- blend mode // 0x01: -x------ -------- -------- -------- object transparency enable // 0x01: x------- -------- -------- -------- inverse transparency? (used by kbm) // 0x02: -------- -------- -------x xxxxxxxx object width // 0x02: -------- --xxxxxx xxxxxx-- -------- object x scale // 0x02: -----xxx xx------ -------- -------- alpha1_1 (blend mode 2) // 0x02: xxxxx--- -------- -------- -------- alpha1_2 (blend mode 1) // 0x03: -------- -------- ------xx xxxxxxxx object height // 0x03: -------- --xxxxxx xxxxxx-- -------- object y scale // 0x03: -----xxx xx------ -------- -------- alpha2_1 (blend mode 2) // 0x03: xxxxx--- -------- -------- -------- alpha2_2 (blend mode 1) uint32_t address_x = cmd[0] & 0x3ff; uint32_t address_y = (cmd[0] >> 10) & 0x3fff; bool relative_coords = (cmd[0] & 0x10000000) ? true : false; int x = cmd[1] & 0x3ff; int y = (cmd[1] >> 10) & 0x3fff; bool xflip = (cmd[1] & 0x04000000) ? true : false; bool yflip = (cmd[1] & 0x08000000) ? true : false; int blend_mode = (cmd[1] >> 28) & 3; bool trans_enable = (cmd[1] & 0xc0000000) ? true : false; uint16_t trans_value = (cmd[1] & 0x80000000) ? 0x0000 : 0x8000; int width = (cmd[2] & 0x1ff) + 1; int xscale = ((cmd[2] >> 10) & 0x7ff) * (((cmd[2] >> 10) & 0x800) ? -1 : 1); int alpha1_1 = (cmd[2] >> 22) & 0x1f; int alpha1_2 = (cmd[2] >> 27) & 0x1f; int height = (cmd[3] & 0x3ff) + 1; int yscale = ((cmd[3] >> 10) & 0x7ff) * (((cmd[3] >> 10) & 0x800) ? -1 : 1); int alpha2_1 = (cmd[3] >> 22) & 0x1f; int alpha2_2 = (cmd[3] >> 27) & 0x1f; if (xscale == 0 || yscale == 0) { return; } if (xflip && ((4 - ((width - 1) % 4)) <= (address_x % 4))) { // Based on logic from pop'n music 8 @ 0x800b30d0 address_x -= 4; } if (yflip) { // Based on logic from pop'n music 8 @ 0x800b3140 y -= (((height * 64) - 1) / yscale) - (((height - 1) * 64) / yscale); } if (relative_coords) { x += m_fb_origin_x; y += m_fb_origin_y; } uint32_t address = (address_y << 10) | address_x; LOGDRAW("%s Draw Object %08X (%d, %d), x %d, y %d, w %d, h %d, sx: %f, sy: %f [%08X %08X %08X %08X]\n", basetag(), address, address_x, address_y, x, y, width, height, 64.0f / (float)xscale, 64.0f / (float)yscale, cmd[0], cmd[1], cmd[2], cmd[3]); int orig_height = height; width = (((width * 65536) / xscale) * 64) / 65536; height = (((height * 65536) / yscale) * 64) / 65536; if (height <= 0 || width <= 0) { return; } int fb_width = m_frame[0].width + 1; int fb_height = m_frame[0].height + 1; if (width > fb_width) width = fb_width; if (height > fb_height) height = fb_height; int fb_pitch = 1024; int v = 0; int xinc = xflip ? -1 : 1; uint16_t *vram16 = (uint16_t*)m_vram.get(); for (int j=0; j < height; j++) { int index; uint32_t fbaddr = ((j+y) * fb_pitch) + x; if (yflip) { index = address + ((orig_height - 1 - (v >> 6)) * fb_pitch); } else { index = address + ((v >> 6) * fb_pitch); } if (xflip) { fbaddr += width - 1; } int u = 0; for (int i=0; i < width; i++) { uint16_t pix = vram16[((index + (u >> 6)) ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)) & 0xffffff]; bool draw = !trans_enable || (trans_enable && ((pix & 0x8000) == trans_value)); if (fbaddr < VRAM_SIZE_HALF && draw) { if (blend_mode) { uint16_t srcpix = vram16[fbaddr ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)]; uint32_t sr = (srcpix >> 10) & 0x1f; uint32_t sg = (srcpix >> 5) & 0x1f; uint32_t sb = (srcpix >> 0) & 0x1f; uint32_t r = (pix >> 10) & 0x1f; uint32_t g = (pix >> 5) & 0x1f; uint32_t b = (pix >> 0) & 0x1f; if (blend_mode == 1) { sr = ((sr * alpha2_2) + (r * alpha1_2)) >> 4; sg = ((sg * alpha2_2) + (g * alpha1_2)) >> 4; sb = ((sb * alpha2_2) + (b * alpha1_2)) >> 4; } else if (blend_mode == 2) { // Used by Keyboardmania for pulsating glow effects sr = ((sr * alpha2_1) + (r * alpha1_1)) >> 4; sg = ((sg * alpha2_1) + (g * alpha1_1)) >> 4; sb = ((sb * alpha2_1) + (b * alpha1_1)) >> 4; } if (sr > 0x1f) sr = 0x1f; if (sg > 0x1f) sg = 0x1f; if (sb > 0x1f) sb = 0x1f; pix = (sr << 10) | (sg << 5) | sb | (pix & 0x8000); } vram16[fbaddr ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)] = pix; } fbaddr += xinc; u += xscale; } v += yscale; } } void k057714_device::fill_rect(uint32_t *cmd) { // 0x00: xxx----- -------- -------- -------- command (4) // 0x00: ---x---- -------- -------- -------- 0: absolute coordinates // 1: relative coordinates from framebuffer origin // 0x00: ----xx-- -------- -------- -------- ? // 0x00: -------- -------- ------xx xxxxxxxx width // 0x00: -------- ----xxxx xxxxxx-- -------- height // 0x01: -------- -------- ------xx xxxxxxxx x // 0x01: -------- xxxxxxxx xxxxxx-- -------- y // 0x01: ---x---- -------- -------- -------- ? // 0x02: xxxxxxxx xxxxxxxx -------- -------- fill pattern pixel 0 // 0x02: -------- -------- xxxxxxxx xxxxxxxx fill pattern pixel 1 // 0x03: xxxxxxxx xxxxxxxx -------- -------- fill pattern pixel 2 // 0x03: -------- -------- xxxxxxxx xxxxxxxx fill pattern pixel 3 int x = cmd[1] & 0x3ff; int y = (cmd[1] >> 10) & 0x3fff; int width = (cmd[0] & 0x3ff) + 1; int height = ((cmd[0] >> 10) & 0x3ff) + 1; bool relative_coords = (cmd[0] & 0x10000000) ? true : false; if (relative_coords) { x += m_fb_origin_x; y += m_fb_origin_y; } uint16_t color[4]; color[0] = (cmd[2] >> 16); color[1] = (cmd[2] & 0xffff); color[2] = (cmd[3] >> 16); color[3] = (cmd[3] & 0xffff); LOGCMDEXEC("%s Fill Rect x %d, y %d, w %d, h %d, %08X %08X [%08X %08X %08X %08X]\n", basetag(), x, y, width, height, cmd[2], cmd[3], cmd[0], cmd[1], cmd[2], cmd[3]); int x1 = x; int x2 = x + width; int y1 = y; int y2 = y + height; uint16_t *vram16 = (uint16_t*)m_vram.get(); int fb_pitch = 1024; for (int j=y1; j < y2; j++) { uint32_t fbaddr = j * fb_pitch; for (int i=x1; i < x2; i++) { vram16[(fbaddr+i) ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)] = color[i&3]; } } } void k057714_device::draw_character(uint32_t *cmd) { // 0x00: xxx----- -------- -------- -------- command (7) // 0x00: ---x---- -------- -------- -------- 0: absolute coordinates // 1: relative coordinates from framebuffer base (unverified, should be same as other operations) // 0x00: -------- xxxxxxxx xxxxxxxx xxxxxxxx character data address in vram // 0x01: -------- -------- ------xx xxxxxxxx character x // 0x01: -------- xxxxxxxx xxxxxx-- -------- character y // 0x01: -------x -------- -------- -------- double height // 0x01: --x----- -------- -------- -------- ? // 0x01: -x------ -------- -------- -------- transparency enable // 0x02: xxxxxxxx xxxxxxxx -------- -------- color 0 // 0x02: -------- -------- xxxxxxxx xxxxxxxx color 1 // 0x03: xxxxxxxx xxxxxxxx -------- -------- color 2 // 0x03: -------- -------- xxxxxxxx xxxxxxxx color 3 int x = cmd[1] & 0x3ff; int y = (cmd[1] >> 10) & 0x3fff; uint32_t address = cmd[0] & 0xffffff; uint16_t color[4]; bool relative_coords = (cmd[0] & 0x10000000) ? true : false; bool double_height = (cmd[1] & 0x01000000) ? true : false; bool trans_enable = (cmd[1] & 0x40000000) ? true : false; if (relative_coords) { x += m_fb_origin_x; y += m_fb_origin_y; } color[0] = cmd[2] >> 16; color[1] = cmd[2] & 0xffff; color[2] = cmd[3] >> 16; color[3] = cmd[3] & 0xffff; LOGCMDEXEC("%s Draw Char %08X, x %d, y %d [%08X %08X %08X %08X]\n", basetag(), address, x, y, cmd[0], cmd[1], cmd[2], cmd[3]); uint16_t *vram16 = (uint16_t*)m_vram.get(); int fb_pitch = 1024; int height = double_height ? 16 : 8; for (int j=0; j < height; j++) { uint32_t fbaddr = (y+j) * fb_pitch; uint16_t line = vram16[address ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)]; address += 4; for (int i=0; i < 8; i++) { int p = (line >> ((7-i) * 2)) & 3; bool draw = !trans_enable || (trans_enable && (color[p] & 0x8000)); if (draw) vram16[(fbaddr+x+i) ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)] = color[p]; } } } void k057714_device::fb_config(uint32_t *cmd) { // 0x00: xxx----- -------- -------- -------- command (3) // 0x01: -------- -------- -------- -------- unused? // 0x02: -------- -------- ------xx xxxxxxxx Framebuffer Origin X // 0x03: -------- -------- --xxxxxx xxxxxxxx Framebuffer Origin Y LOGCMDEXEC("%s FB Config %08X %08X %08X %08X\n", basetag(), cmd[0], cmd[1], cmd[2], cmd[3]); m_fb_origin_x = cmd[2] & 0x3ff; m_fb_origin_y = cmd[3] & 0x3fff; } void k057714_device::execute_display_list(uint32_t addr) { bool end = false; int counter = 0; LOGCMDEXEC("%s Exec Display List %08X\n", basetag(), addr); addr /= 2; while (!end && counter < 0x1000 && addr < (VRAM_SIZE/4)) { uint32_t *cmd = &m_vram[addr]; addr += 4; int command = (cmd[0] >> 29) & 0x7; switch (command) { case 0: // NOP? break; case 1: // Execute display list execute_display_list(cmd[0] & 0xffffff); break; case 2: // End of display list end = true; break; case 3: // Framebuffer config fb_config(cmd); break; case 4: // Fill rectangle fill_rect(cmd); break; case 5: // Draw object draw_object(cmd); break; case 6: case 7: // Draw 8x8 character (2 bits per pixel) draw_character(cmd); break; default: LOGCMDEXEC("GCU Unknown command %08X %08X %08X %08X\n", cmd[0], cmd[1], cmd[2], cmd[3]); break; } counter++; }; } void k057714_device::execute_command(uint32_t* cmd) { int command = (cmd[0] >> 29) & 0x7; LOGCMDEXEC("%s Exec Command %08X, %08X, %08X, %08X\n", basetag(), cmd[0], cmd[1], cmd[2], cmd[3]); switch (command) { case 0: // NOP? break; case 1: // Execute display list execute_display_list(cmd[0] & 0xffffff); break; case 2: // End of display list break; case 3: // Framebuffer config fb_config(cmd); break; case 4: // Fill rectangle fill_rect(cmd); break; case 5: // Draw object draw_object(cmd); break; case 6: case 7: // Draw 8x8 character (2 bits per pixel) draw_character(cmd); break; default: LOGCMDEXEC("GCU Unknown command %08X %08X %08X %08X\n", cmd[0], cmd[1], cmd[2], cmd[3]); break; } }