// license:BSD-3-Clause // copyright-holders:Nicola Salmoria, Tormod Tjaberg, Mirko Buffoni,Lee Taylor, Valerio Verrando, Zsolt Vasvari,Derrick Renaud // thanks-to:Michael Strutts, Marco Cassili /*************************************************************************** Midway 8080-based black and white hardware ****************************************************************************/ #include "emu.h" #include "audio/mw8080bw.h" #include "audio/nl_gunfight.h" #include "audio/nl_280zzzap.h" #include "includes/mw8080bw.h" #include "speaker.h" namespace { /************************************* * * Implementation of the common * noise circuits * *************************************/ discrete_lfsr_desc const midway_lfsr = { DISC_CLK_IS_FREQ, 17, // bit length // the RC network fed into pin 4 has the effect of presetting all bits high at power up 0x1ffff, // reset value 4, // use bit 4 as XOR input 0 16, // use bit 16 as XOR input 1 DISC_LFSR_XOR, // feedback stage1 is XOR DISC_LFSR_OR, // feedback stage2 is just stage 1 output OR with external feed DISC_LFSR_REPLACE, // feedback stage3 replaces the shifted register contents 0x000001, // everything is shifted into the first bit only 0, // output is not inverted 12 // output bit }; /************************************* * * Shared by Space Invaders and * Space Invaders II (cocktail) * *************************************/ // sound board 1 or 2, for multi-board games #define INVADERS_NODE(_node, _board) (NODE(_node + ((_board - 1) * 100))) // nodes - inputs #define INVADERS_SAUCER_HIT_EN 01 #define INVADERS_FLEET_DATA 02 #define INVADERS_BONUS_MISSLE_BASE_EN 03 #define INVADERS_INVADER_HIT_EN 04 #define INVADERS_EXPLOSION_EN 05 #define INVADERS_MISSILE_EN 06 // nodes - sounds #define INVADERS_NOISE NODE_10 #define INVADERS_SAUCER_HIT_SND 11 #define INVADERS_FLEET_SND 12 #define INVADERS_BONUS_MISSLE_BASE_SND 13 #define INVADERS_INVADER_HIT_SND 14 #define INVADERS_EXPLOSION_SND 15 #define INVADERS_MISSILE_SND 16 /************************************************ * Noise Generator ************************************************/ // Noise clock was breadboarded and measured at 7515 #define INVADERS_NOISE_GENERATOR \ DISCRETE_LFSR_NOISE(INVADERS_NOISE, /* IC N5, pin 10 */ \ 1, /* ENAB */ \ 1, /* no RESET */ \ 7515, /* CLK in Hz */ \ 12, /* p-p AMPL */ \ 0, /* no FEED input */ \ 12.0/2, /* dc BIAS */ \ &midway_lfsr) /************************************************ * Saucer Hit ************************************************/ discrete_op_amp_info const invaders_saucer_hit_op_amp_B3_9 = { DISC_OP_AMP_IS_NORTON, 0, // no r1 RES_K(100), // R72 RES_M(1), // R71 0, // no r4 CAP_U(1), // C23 0, // vN 12 // vP }; discrete_op_amp_osc_info const invaders_saucer_hit_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_M(1), // R70 RES_K(470), // R64 RES_K(100), // R61 RES_K(120), // R63 RES_M(1), // R62 0, // no r6 0, // no r7 0, // no r8 CAP_U(0.1), // C21 12, // vP }; discrete_op_amp_osc_info const invaders_saucer_hit_vco = { DISC_OP_AMP_OSCILLATOR_VCO_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, RES_M(1), // R65 RES_K(470), // R66 RES_K(680), // R67 RES_M(1), // R69 RES_M(1), // R68 0, // no r6 0, // no r7 0, // no r8 CAP_P(470), // C22 12, // vP }; discrete_op_amp_info const invaders_saucer_hit_op_amp_B3_10 = { DISC_OP_AMP_IS_NORTON, RES_K(680), // R73 RES_K(680), // R77 RES_M(2.7), // R74 RES_K(680), // R75 0, // no c 0, // vN 12 // vP }; #define INVADERS_SAUCER_HIT(_board) \ DISCRETE_INPUTX_LOGIC(INVADERS_NODE(INVADERS_SAUCER_HIT_EN, _board), 12, 0, 0) \ DISCRETE_OP_AMP(INVADERS_NODE(20, _board), /* IC B3, pin 9 */ \ 1, /* ENAB */ \ 0, /* no IN0 */ \ INVADERS_NODE(INVADERS_SAUCER_HIT_EN, _board), /* IN1 */ \ &invaders_saucer_hit_op_amp_B3_9) \ DISCRETE_OP_AMP_OSCILLATOR(INVADERS_NODE(21, _board), /* IC A4, pin 5 */ \ 1, /* ENAB */ \ &invaders_saucer_hit_osc) \ DISCRETE_OP_AMP_VCO1(INVADERS_NODE(22, _board), /* IC A4, pin 9 */ \ 1, /* ENAB */ \ INVADERS_NODE(21, _board), /* VMOD1 */ \ &invaders_saucer_hit_vco) \ DISCRETE_OP_AMP(INVADERS_NODE(INVADERS_SAUCER_HIT_SND, _board), /* IC B3, pin 10 */ \ 1, /* ENAB */ \ INVADERS_NODE(22, _board), /* IN0 */ \ INVADERS_NODE(20, _board), /* IN1 */ \ &invaders_saucer_hit_op_amp_B3_10) /************************************************ * Fleet movement ************************************************/ discrete_comp_adder_table const invaders_thump_resistors = { DISC_COMP_P_RESISTOR, 0, // no cDefault 4, // length { RES_K(20) + RES_K(20), // R126 + R127 RES_K(68), // R128 RES_K(82), // R129 RES_K(100) } // R130 }; discrete_555_desc const invaders_thump_555 = { DISC_555_OUT_ENERGY | DISC_555_OUT_DC, 5, 5.0 - 0.6, // 5V - diode drop DEFAULT_TTL_V_LOGIC_1 // Output of F3 7411 buffer }; #define INVADERS_FLEET(_board) \ DISCRETE_INPUT_DATA (INVADERS_NODE(INVADERS_FLEET_DATA, _board)) \ DISCRETE_COMP_ADDER(INVADERS_NODE(30, _board), \ INVADERS_NODE(INVADERS_FLEET_DATA, _board), /* DATA */ \ &invaders_thump_resistors) \ DISCRETE_555_ASTABLE(INVADERS_NODE(31, _board), /* IC F3, pin 6 */ \ 1, /* RESET */ \ INVADERS_NODE(30, _board), /* R1 */ \ RES_K(75), /* R131 */ \ CAP_U(0.1), /* C29 */ \ &invaders_thump_555) \ DISCRETE_RCFILTER(INVADERS_NODE(32, _board), \ INVADERS_NODE(31, _board), /* IN0 */ \ 100, /* R132 */ \ CAP_U(4.7) ) /* C31 */ \ DISCRETE_RCFILTER(INVADERS_NODE(INVADERS_FLEET_SND, _board), \ INVADERS_NODE(32, _board), /* IN0 */ \ 100 + 100, /* R132 + R133 */ \ CAP_U(10) ) /* C32 */ /************************************************ * Bonus Missle Base ************************************************/ discrete_555_desc const invaders_bonus_555 = { DISC_555_OUT_SQW | DISC_555_OUT_DC, 5.0, // 5V DEFAULT_555_VALUES }; #define INVADERS_BONUS_MISSLE_BASE(_board) \ DISCRETE_INPUT_LOGIC (INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_EN, _board)) \ DISCRETE_555_ASTABLE(INVADERS_NODE(40, _board), /* IC F4, pin 9 */ \ INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_EN, _board), /* RESET */ \ RES_K(100), /* R94 */ \ RES_K(47), /* R95 */ \ CAP_U(1), /* C34 */ \ &invaders_bonus_555) \ DISCRETE_SQUAREWFIX(INVADERS_NODE(41, _board), \ 1, /* ENAB */ \ 480, /* FREQ */ \ 1, /* AMP */ \ 50, /* DUTY */ \ 1.0/2, /* BIAS */ \ 0) /* PHASE */ \ DISCRETE_LOGIC_AND3(INVADERS_NODE(42, _board), /* IC F3, pin 12 */ \ INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_EN, _board), /* INP0 */ \ INVADERS_NODE(41, _board), /* INP1 */ \ INVADERS_NODE(40, _board) ) /* INP2 */ \ DISCRETE_GAIN(INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_SND, _board),/* adjust from logic to TTL voltage level */\ INVADERS_NODE(42, _board), /* IN0 */ \ DEFAULT_TTL_V_LOGIC_1) /* GAIN */ /************************************************ * Invader Hit ************************************************/ discrete_op_amp_info const invaders_invader_hit_op_amp_D3_10 = { DISC_OP_AMP_IS_NORTON, 0, // no r1 RES_K(10), // R53 RES_M(1), // R137 0, // no r4 CAP_U(0.47), // C19 0, // vN 12 // vP }; discrete_op_amp_osc_info const invaders_invader_hit_vco = { DISC_OP_AMP_OSCILLATOR_VCO_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_M(1), // R42 RES_K(470), // R43 RES_K(680), // R44 RES_M(1), // R46 RES_M(1), // R45 0, // no r6 0, // no r7 0, // no r8 CAP_P(330), // C16 12, // vP }; discrete_op_amp_info const invaders_invader_hit_op_amp_D3_4 = { DISC_OP_AMP_IS_NORTON, RES_K(470), // R55 RES_K(680), // R54 RES_M(2.7), // R56 RES_K(680), // R57 0, // no c 0, // vN 12 // vP }; #define INVADERS_INVADER_HIT(_board, _type) \ DISCRETE_INPUTX_LOGIC(INVADERS_NODE(INVADERS_INVADER_HIT_EN, _board), 5, 0, 0) \ DISCRETE_OP_AMP_ONESHOT(INVADERS_NODE(50, _board), /* IC D3, pin 9 */ \ INVADERS_NODE(INVADERS_INVADER_HIT_EN, _board), /* TRIG */ \ &_type##_invader_hit_1sht) \ DISCRETE_OP_AMP(INVADERS_NODE(51, _board), /* IC D3, pin 10 */ \ 1, /* ENAB */ \ 0, /* no IN0 */ \ INVADERS_NODE(50, _board), /* IN1 */ \ &invaders_invader_hit_op_amp_D3_10) \ DISCRETE_OP_AMP_OSCILLATOR(INVADERS_NODE(52, _board), /* IC B4, pin 5 */ \ 1, /* ENAB */ \ &_type##_invader_hit_osc) \ DISCRETE_OP_AMP_VCO1(INVADERS_NODE(53, _board), /* IC B4, pin 4 */ \ 1, /* ENAB */ \ INVADERS_NODE(52, _board), /* VMOD1 */ \ &invaders_invader_hit_vco) \ DISCRETE_OP_AMP(INVADERS_NODE(INVADERS_INVADER_HIT_SND, _board),/* IC D3, pin 4 */ \ 1, /* ENAB */ \ INVADERS_NODE(53, _board), /* IN0 */ \ INVADERS_NODE(51, _board), /* IN1 */ \ &invaders_invader_hit_op_amp_D3_4) /************************************************ * Missle Sound ************************************************/ discrete_op_amp_1sht_info const invaders_missle_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R32 RES_K(100), // R30 RES_M(1), // R31 RES_M(1), // R33 RES_M(2.2), // R34 CAP_U(1), // C12, CAP_U(0.22) on Taito PCB CAP_P(470), // C15 0, // vN 12 // vP }; discrete_op_amp_info const invaders_missle_op_amp_B3 = { DISC_OP_AMP_IS_NORTON, 0, // no r1 RES_K(10), // R35 RES_M(1.5), // R36 0, // no r4 CAP_U(0.22), // C13 0, // vN 12 // vP }; discrete_op_amp_osc_info const invaders_missle_op_amp_osc = { DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, // DISC_OP_AMP_OSCILLATOR_VCO_3 doesn't fully represent the actual circuit on a Taito PCB, missile sound is off 1.0 / (1.0 / RES_M(1) + 1.0 / RES_K(330)) + RES_M(1.5), // R29||R11 + R12 RES_M(1), // R16 RES_K(560), // R17 RES_M(2.2), // R19 RES_M(1), // R16 RES_M(4.7), // R14 RES_M(3.3), // R13, RES_M(2.2) on Taito PCB 0, // no r8 CAP_P(330), // C58 12, // vP }; discrete_op_amp_info const invaders_missle_op_amp_A3 = { DISC_OP_AMP_IS_NORTON, RES_K(560), // R22 RES_K(470), // R15 RES_M(2.7), // R20 RES_K(560), // R21 0, // no c 0, // vN 12 // vP }; discrete_op_amp_tvca_info const invaders_missle_tvca = { RES_M(2.7), // R25 RES_K(560), // R23 0, // no r3 RES_K(560), // R26 RES_K(1), // 0, // no r6 RES_K(560), // R60 0, // no r8 0, // no r9 0, // no r10 0, // no r11 CAP_U(0.1), // C14 0, // no c2 0, 0, // no c3, c4 5, // v1 0, // no v2 0, // no v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f0 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f1 DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, // f2 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f3 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f4 DISC_OP_AMP_TRIGGER_FUNCTION_NONE // no f5 }; #define INVADERS_MISSILE(_board, _type) \ DISCRETE_INPUTX_LOGIC(INVADERS_NODE(INVADERS_MISSILE_EN, _board), 5, 0, 0) \ DISCRETE_OP_AMP_ONESHOT(INVADERS_NODE(70, _board), /* IC B3, pin 4 */ \ INVADERS_NODE(INVADERS_MISSILE_EN, _board), /* TRIG */ \ &_type##_missle_1sht) \ DISCRETE_OP_AMP(INVADERS_NODE(71, _board), /* IC B3, pin 5 */ \ 1, /* ENAB */ \ 0, /* no IN0 */ \ INVADERS_NODE(70, _board), /* IN1 */ \ &invaders_missle_op_amp_B3) \ /* next 2 modules simulate the D1 voltage drop */ \ DISCRETE_ADDER2(INVADERS_NODE(72, _board), \ 1, /* ENAB */ \ INVADERS_NODE(71, _board), /* IN0 */ \ -0.5) /* IN1 */ \ DISCRETE_CLAMP(INVADERS_NODE(73, _board), \ INVADERS_NODE(72, _board), /* IN0 */ \ 0, /* MIN */ \ 12) /* MAX */ \ DISCRETE_CRFILTER(INVADERS_NODE(74, _board), \ INVADERS_NOISE, /* IN0 */ \ RES_M(1) + RES_K(330), /* R29, R11 */ \ CAP_U(0.1) ) /* C57 */ \ DISCRETE_GAIN(INVADERS_NODE(75, _board), \ INVADERS_NODE(74, _board), /* IN0 */ \ RES_K(330)/(RES_M(1) + RES_K(330))) /* GAIN - R29 : R11 */ \ DISCRETE_OP_AMP_VCO2(INVADERS_NODE(76, _board), /* IC C1, pin 4 */ \ 1, /* ENAB */ \ INVADERS_NODE(75, _board), /* VMOD1 */ \ INVADERS_NODE(73, _board), /* VMOD2 */ \ &invaders_missle_op_amp_osc) \ DISCRETE_OP_AMP(INVADERS_NODE(77, _board), /* IC A3, pin 9 */ \ 1, /* ENAB */ \ INVADERS_NODE(76, _board), /* IN0 */ \ INVADERS_NODE(73, _board), /* IN1 */ \ &invaders_missle_op_amp_A3) \ DISCRETE_OP_AMP_TRIG_VCA(INVADERS_NODE(INVADERS_MISSILE_SND, _board), /* IC A3, pin 10 */ \ INVADERS_NODE(INVADERS_MISSILE_EN, _board), /* TRG0 */ \ 0, /* no TRG1 */ \ 0, /* no TRG2 */ \ INVADERS_NODE(77, _board), /* IN0 */ \ 0, /* no IN1 */ \ &invaders_missle_tvca) /************************************************ * Explosion ************************************************/ discrete_op_amp_1sht_info const invaders_explosion_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R90 RES_K(100), // R88 RES_M(1), // R91 RES_M(1), // R89 RES_M(2.2), // R92 CAP_U(2.2), // C24 CAP_P(470), // C25 0, // vN 12 // vP }; discrete_op_amp_tvca_info const invaders_explosion_tvca = { RES_M(2.7), // R80 RES_K(680), // R79 0, // no r3 RES_K(680), // R82 RES_K(10), // R93 0, // no r6 RES_K(680), // R83 0, // no r8 0, // no r9 0, // no r10 0, // no r11 CAP_U(1), // C26 0, // no c2 0, 0, // no c3, c4 12.0 - OP_AMP_NORTON_VBE, // v1 0, // no v2 0, // no v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f0 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f1 DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, // f2 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f3 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f4 DISC_OP_AMP_TRIGGER_FUNCTION_NONE // no f5 }; #define INVADERS_EXPLOSION(_board) \ DISCRETE_INPUTX_LOGIC(INVADERS_NODE(INVADERS_EXPLOSION_EN, _board), 5, 0, 0) \ DISCRETE_OP_AMP_ONESHOT(INVADERS_NODE(60, _board), /* IC D2, pin 10 */ \ INVADERS_NODE(INVADERS_EXPLOSION_EN, _board), /* TRIG */ \ &invaders_explosion_1sht) \ DISCRETE_OP_AMP_TRIG_VCA(INVADERS_NODE(61, _board), /* IC D2, pin 4 */ \ INVADERS_NODE(60, _board), /* TRG0 */ \ 0, /* no TRG1 */ \ 0, /* no TRG2 */ \ INVADERS_NOISE, /* IN0 */ \ 0, /* no IN1 */ \ &invaders_explosion_tvca) \ DISCRETE_RCFILTER(INVADERS_NODE(62, _board), \ INVADERS_NODE(61, _board), /* IN0 */ \ RES_K(5.6), /* R84 */ \ CAP_U(0.1) ) /* C27 */ \ DISCRETE_RCFILTER(INVADERS_NODE(INVADERS_EXPLOSION_SND, _board), \ INVADERS_NODE(62, _board), /* IN0 */ \ RES_K(5.6) + RES_K(6.8), /* R84 + R85 */ \ CAP_U(0.1) ) /* C28 */ /************************************************ * Final mix ************************************************/ discrete_mixer_desc const invaders_mixer = { DISC_MIXER_IS_OP_AMP, // type { RES_K(200), // R78 RES_K(10) + 100 + 100, // R134 + R133 + R132 RES_K(150), // R136 RES_K(200), // R59 RES_K(2) + RES_K(6.8) + RES_K(5.6), // R86 + R85 + R84 RES_K(150) }, // R28 {0}, // no rNode{} { 0, 0, 0, 0, 0, CAP_U(0.001) }, // C11 0, // no rI RES_K(100), // R105 0, // no cF CAP_U(0.1), // C45 0, // vRef = ground 1 // gain }; #define INVADERS_MIXER(_board, _type) \ DISCRETE_MIXER6(INVADERS_NODE(90, _board), \ 1, /* ENAB */ \ INVADERS_NODE(INVADERS_SAUCER_HIT_SND, _board), /* IN0 */ \ INVADERS_NODE(INVADERS_FLEET_SND, _board), /* IN1 */ \ INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_SND, _board), /* IN2 */ \ INVADERS_NODE(INVADERS_INVADER_HIT_SND, _board), /* IN3 */ \ INVADERS_NODE(INVADERS_EXPLOSION_SND, _board), /* IN4 */ \ INVADERS_NODE(INVADERS_MISSILE_SND, _board), /* IN5 */ \ &_type##_mixer) \ DISCRETE_OUTPUT(INVADERS_NODE(90, _board), 2500) } // anonymous namespace /************************************* * * Device type globals * *************************************/ DEFINE_DEVICE_TYPE(SEAWOLF_AUDIO, seawolf_audio_device, "seawolf_audio", "Midway Sea Wolf Audio") DEFINE_DEVICE_TYPE(GUNFIGHT_AUDIO, gunfight_audio_device, "gunfight_audio", "Midway Gun Fight Audio") DEFINE_DEVICE_TYPE(BOOTHILL_AUDIO, boothill_audio_device, "boothill_audio", "Midway Boot Hill Audio") DEFINE_DEVICE_TYPE(DESERTGU_AUDIO, desertgu_audio_device, "desertgu_audio", "Midway Desert Gun Audio") DEFINE_DEVICE_TYPE(DPLAY_AUDIO, dplay_audio_device, "dplay_audio", "Midway Double Play Audio") DEFINE_DEVICE_TYPE(GMISSILE_AUDIO, gmissile_audio_device, "gmissile_audio", "Midway Guided Missile Audio") DEFINE_DEVICE_TYPE(M4_AUDIO, m4_audio_device, "m4_audio", "Midway M-4 Audio") DEFINE_DEVICE_TYPE(CLOWNS_AUDIO, clowns_audio_device, "clowns_audio", "Midway Clowns Audio") DEFINE_DEVICE_TYPE(SPACWALK_AUDIO, spacwalk_audio_device, "spacwalk_audio", "Midway Space Walk Audio") DEFINE_DEVICE_TYPE(DOGPATCH_AUDIO, dogpatch_audio_device, "dogpatch_audio", "Midway Dog Patch Audio") DEFINE_DEVICE_TYPE(SPCENCTR_AUDIO, spcenctr_audio_device, "spcenctr_audio", "Midway Space Encounters Audio") DEFINE_DEVICE_TYPE(PHANTOM2_AUDIO, phantom2_audio_device, "phantom2_audio", "Midway Phantom 2 Audio") DEFINE_DEVICE_TYPE(INVADERS_AUDIO, invaders_audio_device, "invaders_audio", "Taito Space Invaders Audio") DEFINE_DEVICE_TYPE(INVAD2CT_AUDIO, invad2ct_audio_device, "invad2ct_audio", "Midway Space Invaders II Audio") DEFINE_DEVICE_TYPE(ZZZAP_AUDIO, zzzap_audio_device, "zzzap_audio", "Midway 280-ZZZAP Audio") DEFINE_DEVICE_TYPE(LAGUNAR_AUDIO, lagunar_audio_device, "lagunar_audio", "Midway Laguna Racer Audio") /************************************* * * Implementation of tone generator used * by a few of these games * *************************************/ #define MIDWAY_TONE_EN NODE_100 #define MIDWAY_TONE_DATA_L NODE_101 #define MIDWAY_TONE_DATA_H NODE_102 #define MIDWAY_TONE_SND NODE_103 #define MIDWAY_TONE_TRASFORM_OUT NODE_104 #define MIDWAY_TONE_BEFORE_AMP_SND NODE_105 #define MIDWAY_TONE_GENERATOR(discrete_op_amp_tvca_info) \ /* bit 0 of tone data is always 0 */ \ /* join the L & H tone bits */ \ DISCRETE_INPUT_LOGIC(MIDWAY_TONE_EN) \ DISCRETE_INPUT_DATA (MIDWAY_TONE_DATA_L) \ DISCRETE_INPUT_DATA (MIDWAY_TONE_DATA_H) \ DISCRETE_TRANSFORM4(MIDWAY_TONE_TRASFORM_OUT, MIDWAY_TONE_DATA_H, 0x40, MIDWAY_TONE_DATA_L, 0x02, "01*23*+") \ DISCRETE_NOTE(MIDWAY_TONE_BEFORE_AMP_SND, 1, (double)MW8080BW_MASTER_CLOCK/10/2, MIDWAY_TONE_TRASFORM_OUT, 0xfff, 1, DISC_CLK_IS_FREQ) \ DISCRETE_OP_AMP_TRIG_VCA(MIDWAY_TONE_SND, MIDWAY_TONE_BEFORE_AMP_SND, MIDWAY_TONE_EN, 0, 12, 0, &discrete_op_amp_tvca_info) // most common values based on clowns schematic static discrete_op_amp_tvca_info const midway_music_tvca_info = { RES_M(3.3), // r502 RES_K(10) + RES_K(680), // r505 + r506 0, RES_K(680), // r503 RES_K(10), // r500 0, RES_K(680), // r501 0, 0, 0, 0, CAP_U(.001), // c500 0, 0, 0, 12, // v1 0, // v2 0, // v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG1, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; midway_tone_generator_device_base::midway_tone_generator_device_base(machine_config const &mconfig, device_type type, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, type, tag, owner, clock), m_discrete(*this, "discrete") { } void midway_tone_generator_device_base::tone_generator_lo_w(u8 data) { m_discrete->write(MIDWAY_TONE_EN, (data >> 0) & 0x01); m_discrete->write(MIDWAY_TONE_DATA_L, (data >> 1) & 0x1f); // D6 and D7 are not connected } void midway_tone_generator_device_base::tone_generator_hi_w(u8 data) { m_discrete->write(MIDWAY_TONE_DATA_H, data & 0x3f); // D6 and D7 are not connected } /************************************* * * Sea Wolf * *************************************/ seawolf_audio_device::seawolf_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, SEAWOLF_AUDIO, tag, owner, clock), m_samples(*this, "samples"), m_prev(0U) { } void seawolf_audio_device::write(u8 data) { u8 const rising(data & ~m_prev); m_prev = data; if (BIT(rising, 0)) m_samples->start(0, 0); // SHIP HIT sound if (BIT(rising, 1)) m_samples->start(1, 1); // TORPEDO sound if (BIT(rising, 2)) m_samples->start(2, 2); // DIVE sound if (BIT(rising, 3)) m_samples->start(3, 3); // SONAR sound if (BIT(rising, 4)) m_samples->start(4, 4); // MINE HIT sound machine().bookkeeping().coin_counter_w(0, BIT(data, 5)); // D6 and D7 are not connected } void seawolf_audio_device::device_add_mconfig(machine_config &config) { static char const *const sample_names[] = { "*seawolf", "shiphit", "torpedo", "dive", "sonar", "minehit", nullptr }; SPEAKER(config, "mono").front_center(); SAMPLES(config, m_samples); m_samples->set_channels(5); m_samples->set_samples_names(sample_names); m_samples->add_route(ALL_OUTPUTS, "mono", 0.6); } void seawolf_audio_device::device_start() { m_prev = 0U; save_item(NAME(m_prev)); } /************************************* * * Gun Fight * *************************************/ // Sound board volume potentiometers. By default, these are all set to their // midpoint values. static INPUT_PORTS_START(gunfight_audio) PORT_START("POT_1_LEFT_MASTER_VOL") PORT_ADJUSTER( 50, "Pot: Left Master Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_left_master_vol") PORT_START("POT_2_RIGHT_MASTER_VOL") PORT_ADJUSTER( 50, "Pot: Right Master Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_right_master_vol") PORT_START("POT_3_LEFT_SHOT_VOL") PORT_ADJUSTER( 50, "Pot: Left Shot Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_left_shot_vol") PORT_START("POT_4_RIGHT_SHOT_VOL") PORT_ADJUSTER( 50, "Pot: Right Shot Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_right_shot_vol") PORT_START("POT_5_LEFT_HIT_VOL") PORT_ADJUSTER( 50, "Pot: Left Hit Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_left_hit_vol") PORT_START("POT_6_RIGHT_HIT_VOL") PORT_ADJUSTER( 50, "Pot: Right Hit Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_right_hit_vol") INPUT_PORTS_END gunfight_audio_device::gunfight_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, GUNFIGHT_AUDIO, tag, owner, clock), m_left_shot(*this, "sound_nl:left_shot"), m_right_shot(*this, "sound_nl:right_shot"), m_left_hit(*this, "sound_nl:left_hit"), m_right_hit(*this, "sound_nl:right_hit") { } void gunfight_audio_device::write(u8 data) { // D0 and D1 are just tied to 1k resistors machine().bookkeeping().coin_counter_w(0, BIT(data, 2)); // the 74175 latches and inverts the top 4 bits switch ((~data >> 4) & 0x0f) { case 0x01: // LEFT SHOT sound (left speaker) m_left_shot->write_line(1); break; case 0x02: // RIGHT SHOT sound (right speaker) m_right_shot->write_line(1); break; case 0x03: // LEFT HIT sound (left speaker) m_left_hit->write_line(1); break; case 0x04: // RIGHT HIT sound (right speaker) m_right_hit->write_line(1); break; default: // any other value will turn off the sound switches m_left_shot->write_line(0); m_right_shot->write_line(0); m_left_hit->write_line(0); m_right_hit->write_line(0); break; } } void gunfight_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "lspeaker").front_left(); SPEAKER(config, "rspeaker").front_right(); netlist_mame_sound_device &nl_sound = NETLIST_SOUND(config, "sound_nl", 48000) .set_source(NETLIST_NAME(gunfight)); nl_sound.add_route(0, "lspeaker", 0.5); nl_sound.add_route(1, "rspeaker", 0.5); NETLIST_LOGIC_INPUT(config, "sound_nl:left_shot", "I_LEFT_SHOT.IN", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:right_shot", "I_RIGHT_SHOT.IN", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:left_hit", "I_LEFT_HIT.IN", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:right_hit", "I_RIGHT_HIT.IN", 0); // With all the volume potentiometers at their default midpoint // settings, the highest output spikes are around +/- 3 volts, for an // extreme output swing of 6 volts. Gun Fight's audio power amplifiers // are configured with a voltage gain of 15 and have a single power // supply of about 22 volts, so they will definitely clip the highest // output peaks, but we don't model them. Instead, be cautious: scale // the outputs before the power amps so that the highest output spikes // of +/- 3 volts just reach the clipping limits for signed 16-bit // samples. NETLIST_STREAM_OUTPUT(config, "sound_nl:cout0", 0, "OUT_L").set_mult_offset(1.0 / 3.0, 0.0); NETLIST_STREAM_OUTPUT(config, "sound_nl:cout1", 1, "OUT_R").set_mult_offset(1.0 / 3.0, 0.0); // Netlist volume-potentiometer interfaces NETLIST_ANALOG_INPUT(config, "sound_nl:pot_left_master_vol", "R103.DIAL"); NETLIST_ANALOG_INPUT(config, "sound_nl:pot_right_master_vol", "R203.DIAL"); NETLIST_ANALOG_INPUT(config, "sound_nl:pot_left_shot_vol", "R123.DIAL"); NETLIST_ANALOG_INPUT(config, "sound_nl:pot_right_shot_vol", "R223.DIAL"); NETLIST_ANALOG_INPUT(config, "sound_nl:pot_left_hit_vol", "R110.DIAL"); NETLIST_ANALOG_INPUT(config, "sound_nl:pot_right_hit_vol", "R210.DIAL"); } ioport_constructor gunfight_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(gunfight_audio); } void gunfight_audio_device::device_start() { } /************************************* * * Boot Hill * * Discrete sound emulation: Jan 2007, D.R. * *************************************/ // nodes - inputs #define BOOTHILL_GAME_ON_EN NODE_01 #define BOOTHILL_LEFT_SHOT_EN NODE_02 #define BOOTHILL_RIGHT_SHOT_EN NODE_03 #define BOOTHILL_LEFT_HIT_EN NODE_04 #define BOOTHILL_RIGHT_HIT_EN NODE_05 // nodes - sounds #define BOOTHILL_NOISE NODE_06 #define BOOTHILL_L_SHOT_SND NODE_07 #define BOOTHILL_R_SHOT_SND NODE_08 #define BOOTHILL_L_HIT_SND NODE_09 #define BOOTHILL_R_HIT_SND NODE_10 // nodes - adjusters #define BOOTHILL_MUSIC_ADJ NODE_11 static discrete_op_amp_tvca_info const boothill_tone_tvca_info = { RES_M(3.3), RES_K(100) + RES_K(680), 0, RES_K(680), RES_K(10), 0, RES_K(680), 0, 0, 0, 0, CAP_U(.001), 0, 0, 0, 12, 0, 0, 12, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG1, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_op_amp_tvca_info const boothill_shot_tvca_info = { RES_M(2.7), RES_K(510), 0, RES_K(510), RES_K(10), 0, RES_K(510), 0, 0, 0, 0, CAP_U(0.22), 0, 0, 0, 12, 0, 0, 12, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_op_amp_tvca_info const boothill_hit_tvca_info = { RES_M(2.7), RES_K(510), 0, RES_K(510), RES_K(10), 0, RES_K(510), 0, 0, 0, 0, 0, CAP_U(1), 0, 0, 12, 0, 0, 12, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_mixer_desc const boothill_l_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(12) + RES_K(68) + RES_K(33), RES_K(12) + RES_K(100) + RES_K(33) }, { 0 }, { 0 }, 0, RES_K(100), 0, CAP_U(0.1), 0, 7200 // final gain }; static discrete_mixer_desc const boothill_r_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(12) + RES_K(68) + RES_K(33), RES_K(12) + RES_K(100) + RES_K(33), RES_K(33) }, { 0, 0, BOOTHILL_MUSIC_ADJ }, { 0 }, 0, RES_K(100), 0, CAP_U(0.1), 0, 7200 // final gain }; static DISCRETE_SOUND_START(boothill_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(BOOTHILL_GAME_ON_EN) DISCRETE_INPUT_LOGIC(BOOTHILL_LEFT_SHOT_EN) DISCRETE_INPUT_LOGIC(BOOTHILL_RIGHT_SHOT_EN) DISCRETE_INPUT_LOGIC(BOOTHILL_LEFT_HIT_EN) DISCRETE_INPUT_LOGIC(BOOTHILL_RIGHT_HIT_EN) /* The low value of the pot is set to 75000. A real 1M pot will never go to 0 anyways. This will give the control more apparent volume range. The music way overpowers the rest of the sounds anyways. */ DISCRETE_ADJUSTMENT(BOOTHILL_MUSIC_ADJ, RES_M(1), 75000, DISC_LOGADJ, "MUSIC_ADJ") /************************************************ * Tone generator ************************************************/ MIDWAY_TONE_GENERATOR(boothill_tone_tvca_info) /************************************************ * Shot sounds ************************************************/ // Noise clock was breadboarded and measured at 7700Hz DISCRETE_LFSR_NOISE(BOOTHILL_NOISE, 1, 1, 7700, 12.0, 0, 12.0/2, &midway_lfsr) DISCRETE_OP_AMP_TRIG_VCA(NODE_30, BOOTHILL_LEFT_SHOT_EN, 0, 0, BOOTHILL_NOISE, 0, &boothill_shot_tvca_info) DISCRETE_RCFILTER(NODE_31, NODE_30, RES_K(12), CAP_U(.01)) DISCRETE_RCFILTER(BOOTHILL_L_SHOT_SND, NODE_31, RES_K(12) + RES_K(68), CAP_U(.0022)) DISCRETE_OP_AMP_TRIG_VCA(NODE_35, BOOTHILL_RIGHT_SHOT_EN, 0, 0, BOOTHILL_NOISE, 0, &boothill_shot_tvca_info) DISCRETE_RCFILTER(NODE_36, NODE_35, RES_K(12), CAP_U(.01)) DISCRETE_RCFILTER(BOOTHILL_R_SHOT_SND, NODE_36, RES_K(12) + RES_K(68), CAP_U(.0033)) /************************************************ * Hit sounds ************************************************/ DISCRETE_OP_AMP_TRIG_VCA(NODE_40, BOOTHILL_LEFT_HIT_EN, 0, 0, BOOTHILL_NOISE, 0, &boothill_hit_tvca_info) DISCRETE_RCFILTER(NODE_41, NODE_40, RES_K(12), CAP_U(.033)) DISCRETE_RCFILTER(BOOTHILL_L_HIT_SND, NODE_41, RES_K(12) + RES_K(100), CAP_U(.0033)) DISCRETE_OP_AMP_TRIG_VCA(NODE_45, BOOTHILL_RIGHT_HIT_EN, 0, 0, BOOTHILL_NOISE, 0, &boothill_hit_tvca_info) DISCRETE_RCFILTER(NODE_46, NODE_45, RES_K(12), CAP_U(.0033)) DISCRETE_RCFILTER(BOOTHILL_R_HIT_SND, NODE_46, RES_K(12) + RES_K(100), CAP_U(.0022)) /************************************************ * Combine all sound sources. ************************************************/ /* There is a 1uF cap on the input to the amp that I was too lazy to simulate. * It is just a DC blocking cap needed by the Norton amp. Doing the extra * work to simulate it is not going to make a difference to the waveform * or to how it sounds. Also I use a regular amp in place of the Norton * for the same reasons. Ease of coding/simulation. */ /* The schematics show the Hit sounds as shown. * This makes the death of the enemy sound on the players side. * This should be verified. */ DISCRETE_MIXER2(NODE_91, BOOTHILL_GAME_ON_EN, BOOTHILL_L_SHOT_SND, BOOTHILL_L_HIT_SND, &boothill_l_mixer) // Music is only added to the right channel per schematics // This should be verified on the real game DISCRETE_MIXER3(NODE_92, BOOTHILL_GAME_ON_EN, BOOTHILL_R_SHOT_SND, BOOTHILL_R_HIT_SND, MIDWAY_TONE_SND, &boothill_r_mixer) DISCRETE_OUTPUT(NODE_91, 1) DISCRETE_OUTPUT(NODE_92, 1) DISCRETE_SOUND_END static INPUT_PORTS_START(boothill_audio) PORT_START("MUSIC_ADJ") PORT_ADJUSTER( 35, "Music Volume" ) INPUT_PORTS_END boothill_audio_device::boothill_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : midway_tone_generator_device_base(mconfig, BOOTHILL_AUDIO, tag, owner, clock) { } void boothill_audio_device::write(u8 data) { // D0 and D1 are not connected machine().bookkeeping().coin_counter_w(0, BIT(data, 2)); m_discrete->write(BOOTHILL_GAME_ON_EN, BIT(data, 3)); m_discrete->write(BOOTHILL_LEFT_SHOT_EN, BIT(data, 4)); m_discrete->write(BOOTHILL_RIGHT_SHOT_EN, BIT(data, 5)); m_discrete->write(BOOTHILL_LEFT_HIT_EN, BIT(data, 6)); m_discrete->write(BOOTHILL_RIGHT_HIT_EN, BIT(data, 7)); } void boothill_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "lspeaker").front_left(); SPEAKER(config, "rspeaker").front_right(); DISCRETE(config, m_discrete, boothill_discrete); m_discrete->add_route(0, "lspeaker", 1.0); m_discrete->add_route(1, "rspeaker", 1.0); } ioport_constructor boothill_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(boothill_audio); } void boothill_audio_device::device_start() { } /************************************* * * Desert Gun * * Discrete sound emulation: Jan 2007, D.R. * *************************************/ // nodes - inputs #define DESERTGU_GAME_ON_EN NODE_01 #define DESERTGU_RIFLE_SHOT_EN NODE_02 #define DESERTGU_BOTTLE_HIT_EN NODE_03 #define DESERTGU_ROAD_RUNNER_HIT_EN NODE_04 #define DESERTGU_CREATURE_HIT_EN NODE_05 #define DESERTGU_ROADRUNNER_BEEP_BEEP_EN NODE_06 #define DESERTGU_TRIGGER_CLICK_EN NODE_07 // nodes - sounds #define DESERTGU_NOISE NODE_08 #define DESERTGU_RIFLE_SHOT_SND NODE_09 #define DESERTGU_BOTTLE_HIT_SND NODE_10 #define DESERTGU_ROAD_RUNNER_HIT_SND NODE_11 #define DESERTGU_CREATURE_HIT_SND NODE_12 #define DESERTGU_ROADRUNNER_BEEP_BEEP_SND NODE_13 #define DESERTGU_TRIGGER_CLICK_SND DESERTGU_TRIGGER_CLICK_EN // nodes - adjusters #define DESERTGU_MUSIC_ADJ NODE_15 static discrete_op_amp_tvca_info const desertgu_rifle_shot_tvca_info = { RES_M(2.7), RES_K(680), 0, RES_K(680), RES_K(10), 0, RES_K(680), 0, 0, 0, 0, CAP_U(0.47), 0, 0, 0, 12, // v1 0, // v2 0, // v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_mixer_desc const desertgu_filter_mixer = { DISC_MIXER_IS_RESISTOR, { RES_K(2), RES_K(27), RES_K(2) + RES_K(1) }, { 0 }, { 0 }, 0, 0, 0, 0, 0, 1 }; static discrete_op_amp_filt_info const desertgu_filter = { 1.0 / ( 1.0 / RES_K(2) + 1.0 / RES_K(27) + 1.0 / (RES_K(2) + RES_K(1))), 0, 68, 0, RES_K(39), CAP_U(0.033), CAP_U(0.033), 0, 0, 12, 0 }; static const discrete_mixer_desc desertgu_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(12) + RES_K(68) + RES_K(30), RES_K(56), RES_K(180), RES_K(47), RES_K(30) }, { 0, 0, 0, 0, DESERTGU_MUSIC_ADJ }, { CAP_U(0.1), CAP_U(0.1), CAP_U(0.1), CAP_U(0.1), CAP_U(0.1) }, 0, RES_K(100), 0, CAP_U(0.1), 0, 6000 // final gain }; static DISCRETE_SOUND_START(desertgu_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(DESERTGU_GAME_ON_EN) DISCRETE_INPUT_LOGIC(DESERTGU_RIFLE_SHOT_EN) DISCRETE_INPUT_LOGIC(DESERTGU_BOTTLE_HIT_EN) DISCRETE_INPUT_LOGIC(DESERTGU_ROAD_RUNNER_HIT_EN) DISCRETE_INPUT_LOGIC(DESERTGU_CREATURE_HIT_EN) DISCRETE_INPUT_LOGIC(DESERTGU_ROADRUNNER_BEEP_BEEP_EN) DISCRETE_INPUTX_LOGIC(DESERTGU_TRIGGER_CLICK_SND, 12, 0, 0) // The low value of the pot is set to 75000. A real 1M pot will never go to 0 anyways. // This will give the control more apparent volume range. // The music way overpowers the rest of the sounds anyways. DISCRETE_ADJUSTMENT(DESERTGU_MUSIC_ADJ, RES_M(1), 75000, DISC_LOGADJ, "MUSIC_ADJ") /************************************************ * Tone generator ************************************************/ MIDWAY_TONE_GENERATOR(midway_music_tvca_info) /************************************************ * Rifle shot sound ************************************************/ // Noise clock was breadboarded and measured at 7515Hz DISCRETE_LFSR_NOISE(DESERTGU_NOISE, 1, 1, 7515, 12.0, 0, 12.0/2, &midway_lfsr) DISCRETE_OP_AMP_TRIG_VCA(NODE_30, DESERTGU_RIFLE_SHOT_EN, 0, 0, DESERTGU_NOISE, 0, &desertgu_rifle_shot_tvca_info) DISCRETE_RCFILTER(NODE_31, NODE_30, RES_K(12), CAP_U(.01)) DISCRETE_CRFILTER(DESERTGU_RIFLE_SHOT_SND, NODE_31, RES_K(12) + RES_K(68), CAP_U(.0022)) /************************************************ * Bottle hit sound ************************************************/ DISCRETE_CONSTANT(DESERTGU_BOTTLE_HIT_SND, 0) // placeholder for incomplete sound /************************************************ * Road Runner hit sound ************************************************/ DISCRETE_CONSTANT(DESERTGU_ROAD_RUNNER_HIT_SND, 0) // placeholder for incomplete sound /************************************************ * Creature hit sound ************************************************/ DISCRETE_CONSTANT(DESERTGU_CREATURE_HIT_SND, 0) // placeholder for incomplete sound /************************************************ * Beep-Beep sound ************************************************/ DISCRETE_CONSTANT(DESERTGU_ROADRUNNER_BEEP_BEEP_SND, 0) // placeholder for incomplete sound /************************************************ * Mix and filter ************************************************/ DISCRETE_MIXER3(NODE_80, 1, DESERTGU_BOTTLE_HIT_SND, DESERTGU_ROADRUNNER_BEEP_BEEP_SND, DESERTGU_TRIGGER_CLICK_SND, &desertgu_filter_mixer) DISCRETE_OP_AMP_FILTER(NODE_81, 1, NODE_80, 0, DISC_OP_AMP_FILTER_IS_BAND_PASS_1, &desertgu_filter) /************************************************ * Combine all sound sources. ************************************************/ DISCRETE_MIXER5(NODE_91, DESERTGU_GAME_ON_EN, DESERTGU_RIFLE_SHOT_SND, DESERTGU_ROAD_RUNNER_HIT_SND, DESERTGU_CREATURE_HIT_SND, NODE_81, MIDWAY_TONE_SND, &desertgu_mixer) DISCRETE_OUTPUT(NODE_91, 1) DISCRETE_SOUND_END INPUT_PORTS_START(desertgu_audio) PORT_START("MUSIC_ADJ") // 3 PORT_ADJUSTER( 60, "Music Volume" ) INPUT_PORTS_END desertgu_audio_device::desertgu_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : midway_tone_generator_device_base(mconfig, DESERTGU_AUDIO, tag, owner, clock), m_ctrl_sel_out(*this), m_recoil(*this, "Player1_Gun_Recoil"), m_p2(0U) { } void desertgu_audio_device::p1_w(u8 data) { // D0 and D1 are not connected machine().bookkeeping().coin_counter_w(0, BIT(data, 2)); m_discrete->write(DESERTGU_GAME_ON_EN, (data >> 3) & 0x01); m_discrete->write(DESERTGU_RIFLE_SHOT_EN, (data >> 4) & 0x01); m_discrete->write(DESERTGU_BOTTLE_HIT_EN, (data >> 5) & 0x01); m_discrete->write(DESERTGU_ROAD_RUNNER_HIT_EN, (data >> 6) & 0x01); m_discrete->write(DESERTGU_CREATURE_HIT_EN, (data >> 7) & 0x01); } void desertgu_audio_device::p2_w(u8 data) { u8 const changed(data ^ m_p2); m_p2 = data; m_discrete->write(DESERTGU_ROADRUNNER_BEEP_BEEP_EN, (data >> 0) & 0x01); m_discrete->write(DESERTGU_TRIGGER_CLICK_EN, (data >> 1) & 0x01); m_recoil = BIT(data, 2); if (BIT(changed, 3)) m_ctrl_sel_out(BIT(data, 3)); // D4-D7 are not connected } void desertgu_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, desertgu_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.8); } ioport_constructor desertgu_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(desertgu_audio); } void desertgu_audio_device::device_start() { m_ctrl_sel_out.resolve(); m_recoil.resolve(); m_p2 = 0U; save_item(NAME(m_p2)); } /************************************* * * Double Play / Extra Inning * * Discrete sound emulation: Jan 2007, D.R. * *************************************/ // nodes - inputs #define DPLAY_GAME_ON_EN NODE_01 #define DPLAY_TONE_ON_EN NODE_02 #define DPLAY_SIREN_EN NODE_03 #define DPLAY_WHISTLE_EN NODE_04 #define DPLAY_CHEER_EN NODE_05 // nodes - sounds #define DPLAY_NOISE NODE_06 #define DPLAY_TONE_SND NODE_07 #define DPLAY_SIREN_SND NODE_08 #define DPLAY_WHISTLE_SND NODE_09 #define DPLAY_CHEER_SND NODE_10 // nodes - adjusters #define DPLAY_MUSIC_ADJ NODE_11 static discrete_lfsr_desc const dplay_lfsr = { DISC_CLK_IS_FREQ, 17, // bit length // the RC network fed into pin 4, has the effect of presetting all bits high at power up 0x1ffff, // reset value 4, // use bit 4 as XOR input 0 16, // use bit 16 as XOR input 1 DISC_LFSR_XOR, // feedback stage1 is XOR DISC_LFSR_OR, // feedback stage2 is just stage 1 output OR with external feed DISC_LFSR_REPLACE, // feedback stage3 replaces the shifted register contents 0x000001, // everything is shifted into the first bit only 0, // output is not inverted 8 // output bit }; static discrete_integrate_info const dplay_siren_integrate_info = { DISC_INTEGRATE_OP_AMP_1 | DISC_OP_AMP_IS_NORTON, RES_M(1), RES_K(100), 0, CAP_U(3.3), 12, 12, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_op_amp_osc_info const dplay_siren_osc = { DISC_OP_AMP_OSCILLATOR_VCO_2 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, // type RES_K(390), // r1 RES_M(5.6), // r2 RES_M(1), // r3 RES_M(1.5), // r4 RES_M(3.3), // r5 RES_K(56), // r6 0, // no r7 0, // no r8 CAP_U(0.0022), // c 12 // vP }; static discrete_integrate_info const dplay_whistle_integrate_info = { DISC_INTEGRATE_OP_AMP_1 | DISC_OP_AMP_IS_NORTON, RES_M(1), RES_K(220) + RES_K(10), 0, CAP_U(3.3), 12, 12, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_op_amp_osc_info const dplay_whistle_osc = { DISC_OP_AMP_OSCILLATOR_VCO_2 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, // type RES_K(510), // r1 RES_M(5.6), // r2 RES_M(1), // r3 RES_M(1.5), // r4 RES_M(3.3), // r5 RES_K(300), // r6 0, // no r7 0, // no r8 CAP_P(220), // c 12 // vP }; static discrete_integrate_info const dplay_cheer_integrate_info = { DISC_INTEGRATE_OP_AMP_1 | DISC_OP_AMP_IS_NORTON, RES_M(1.5), RES_K(100), 0, CAP_U(4.7), 12, 12, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_op_amp_filt_info const dplay_cheer_filter = { RES_K(100), 0, RES_K(100), 0, RES_K(150), CAP_U(0.0047), CAP_U(0.0047), 0, 0, 12, 0 }; static discrete_mixer_desc const dplay_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(68), RES_K(68), RES_K(68), RES_K(18), RES_K(68) }, { 0, 0, 0, 0, DPLAY_MUSIC_ADJ }, { CAP_U(0.1), CAP_U(0.1), CAP_U(0.1), CAP_U(0.1), CAP_U(0.1) } , 0, RES_K(100), 0, CAP_U(0.1), 0, 2000 /* final gain */ }; static DISCRETE_SOUND_START(dplay_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC (DPLAY_GAME_ON_EN) DISCRETE_INPUT_LOGIC (DPLAY_TONE_ON_EN) DISCRETE_INPUTX_LOGIC(DPLAY_SIREN_EN, 5, 0, 0) DISCRETE_INPUTX_LOGIC(DPLAY_WHISTLE_EN, 12, 0, 0) DISCRETE_INPUTX_LOGIC(DPLAY_CHEER_EN, 5, 0, 0) // The low value of the pot is set to 1000. A real 1M pot will never go to 0 anyways. // This will give the control more apparent volume range. // The music way overpowers the rest of the sounds anyways. DISCRETE_ADJUSTMENT(DPLAY_MUSIC_ADJ, RES_M(1), 1000, DISC_LOGADJ, "MUSIC_ADJ") /************************************************ * Music and Tone Generator ************************************************/ MIDWAY_TONE_GENERATOR(midway_music_tvca_info) DISCRETE_OP_AMP_TRIG_VCA(DPLAY_TONE_SND, MIDWAY_TONE_BEFORE_AMP_SND, DPLAY_TONE_ON_EN, 0, 12, 0, &midway_music_tvca_info) /************************************************ * Siren ************************************************/ DISCRETE_INTEGRATE(NODE_30, DPLAY_SIREN_EN, // TRG0 0, // TRG1 &dplay_siren_integrate_info) DISCRETE_OP_AMP_VCO1(DPLAY_SIREN_SND, 1, // ENAB NODE_30, // VMOD1 &dplay_siren_osc) /************************************************ * Whistle ************************************************/ DISCRETE_INTEGRATE(NODE_40, DPLAY_WHISTLE_EN, // TRG0 0, // TRG1 &dplay_whistle_integrate_info) DISCRETE_OP_AMP_VCO1(DPLAY_WHISTLE_SND, 1, // ENAB NODE_40, // VMOD1 &dplay_whistle_osc) /************************************************ * Cheer ************************************************/ // Noise clock was breadboarded and measured at 7700Hz DISCRETE_LFSR_NOISE(DPLAY_NOISE, 1, 1, 7700, 12.0, 0, 12.0/2, &dplay_lfsr) DISCRETE_INTEGRATE(NODE_50, DPLAY_CHEER_EN, 0, &dplay_cheer_integrate_info) DISCRETE_SWITCH(NODE_51, 1, DPLAY_NOISE, 0, NODE_50) DISCRETE_OP_AMP_FILTER(DPLAY_CHEER_SND, 1, NODE_51, 0, DISC_OP_AMP_FILTER_IS_BAND_PASS_1M, &dplay_cheer_filter) /************************************************ * Combine all sound sources. ************************************************/ DISCRETE_MIXER5(NODE_91, DPLAY_GAME_ON_EN, DPLAY_TONE_SND, DPLAY_SIREN_SND, DPLAY_WHISTLE_SND, DPLAY_CHEER_SND, MIDWAY_TONE_SND, &dplay_mixer) DISCRETE_OUTPUT(NODE_91, 1) DISCRETE_SOUND_END static INPUT_PORTS_START(dplay_audio) PORT_START("MUSIC_ADJ") // 3 PORT_ADJUSTER( 60, "Music Volume" ) INPUT_PORTS_END dplay_audio_device::dplay_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : midway_tone_generator_device_base(mconfig, DPLAY_AUDIO, tag, owner, clock) { } void dplay_audio_device::write(u8 data) { m_discrete->write(DPLAY_TONE_ON_EN, BIT(data, 0)); m_discrete->write(DPLAY_CHEER_EN, BIT(data, 1)); m_discrete->write(DPLAY_SIREN_EN, BIT(data, 2)); m_discrete->write(DPLAY_WHISTLE_EN, BIT(data, 3)); m_discrete->write(DPLAY_GAME_ON_EN, BIT(data, 4)); machine().bookkeeping().coin_counter_w(0, BIT(data, 5)); // D6 and D7 are not connected } void dplay_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, dplay_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.8); } ioport_constructor dplay_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(dplay_audio); } void dplay_audio_device::device_start() { } /************************************* * * Guided Missile * *************************************/ gmissile_audio_device::gmissile_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, GMISSILE_AUDIO, tag, owner, clock), m_samples(*this, "samples%u", 1U), m_l_exp(*this, "L_EXP_LIGHT"), m_r_exp(*this, "R_EXP_LIGHT"), m_p1(0U) { } void gmissile_audio_device::p1_w(u8 data) { /* note that the schematics shows the left and right explosions reversed (D5=R, D7=L), but the software confirms that ours is right */ u8 const rising(data & ~m_p1); m_p1 = data; // D0 and D1 are not connected machine().bookkeeping().coin_counter_w(0, BIT(data, 2)); machine().sound().system_mute(!BIT(data, 3)); if (BIT(rising, 4)) m_samples[1]->start(0, 0); // RIGHT MISSILE sound (goes to right speaker) m_l_exp = BIT(data, 5); if (BIT(rising, 5)) m_samples[0]->start(0, 1); // LEFT EXPLOSION sound (goes to left speaker) if (BIT(rising, 6)) m_samples[0]->start(0, 0); // LEFT MISSILE sound (goes to left speaker) m_r_exp = BIT(data, 7); if (BIT(rising, 7)) m_samples[1]->start(0, 1); // RIGHT EXPLOSION sound (goes to right speaker) } void gmissile_audio_device::p2_w(u8 data) { // set AIRPLANE/COPTER/JET PAN(data & 0x07) // set TANK PAN((data >> 3) & 0x07) // D6 and D7 are not connected } void gmissile_audio_device::p3_w(u8 data) { // if (data & 0x01) enable AIRPLANE (bi-plane) sound (goes to AIRPLANE/COPTER/JET panning circuit) // if (data & 0x02) enable TANK sound (goes to TANK panning circuit) // if (data & 0x04) enable COPTER sound (goes to AIRPLANE/COPTER/JET panning circuit) // D3 and D4 are not connected // if (data & 0x20) enable JET (3 fighter jets) sound (goes to AIRPLANE/COPTER/JET panning circuit) // D6 and D7 are not connected } void gmissile_audio_device::device_add_mconfig(machine_config &config) { static char const *const sample_names[] = { "*gmissile", "1", // missle "2", // explosion nullptr }; SPEAKER(config, "lspeaker").front_left(); SPEAKER(config, "rspeaker").front_right(); SAMPLES(config, m_samples[0]); m_samples[0]->set_channels(1); m_samples[0]->set_samples_names(sample_names); m_samples[0]->add_route(ALL_OUTPUTS, "lspeaker", 1.0); SAMPLES(config, m_samples[1]); m_samples[1]->set_channels(1); m_samples[1]->set_samples_names(sample_names); m_samples[1]->add_route(ALL_OUTPUTS, "rspeaker", 1.0); } void gmissile_audio_device::device_start() { m_l_exp.resolve(); m_r_exp.resolve(); m_p1 = 0U; save_item(NAME(m_p1)); } /************************************* * * M-4 * *************************************/ // Noise clock was breadboarded and measured at 3760Hz m4_audio_device::m4_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, M4_AUDIO, tag, owner, clock), m_samples(*this, "samples%u", 1U), m_p1(0U), m_p2(0U) { } void m4_audio_device::p1_w(u8 data) { u8 const rising(data & ~m_p1); m_p1 = data; // D0 and D1 are not connected machine().bookkeeping().coin_counter_w(0, BIT(data, 2)); machine().sound().system_mute(!BIT(data, 3)); if (BIT(rising, 4)) m_samples[0]->start(0, 0); // LEFT PLAYER SHOT sound (goes to left speaker) if (BIT(rising, 5)) m_samples[1]->start(0, 0); // RIGHT PLAYER SHOT sound (goes to right speaker) if (BIT(rising, 6)) m_samples[0]->start(1, 1); // LEFT PLAYER EXPLOSION sound via 300K res (goes to left speaker) if (BIT(rising, 7)) m_samples[1]->start(1, 1); // RIGHT PLAYER EXPLOSION sound via 300K res (goes to right speaker) } void m4_audio_device::p2_w(u8 data) { u8 const rising(data & ~m_p2); m_p2 = data; if (BIT(rising, 0)) m_samples[0]->start(1, 1); // LEFT PLAYER EXPLOSION sound via 510K res (goes to left speaker) if (BIT(rising, 1)) m_samples[1]->start(1, 1); // RIGHT PLAYER EXPLOSION sound via 510K res (goes to right speaker) // if (data & 0x04) enable LEFT TANK MOTOR sound (goes to left speaker) // if (data & 0x08) enable RIGHT TANK MOTOR sound (goes to right speaker) // if (data & 0x10) enable sound that is playing while the right plane is flying. Circuit not named on schematics (goes to left speaker) // if (data & 0x20) enable sound that is playing while the left plane is flying. Circuit not named on schematics (goes to right speaker) // D6 and D7 are not connected } void m4_audio_device::device_add_mconfig(machine_config &config) { static char const *const sample_names[] = { "*m4", "1", // missle "2", // explosion nullptr }; SPEAKER(config, "lspeaker").front_left(); SPEAKER(config, "rspeaker").front_right(); SAMPLES(config, m_samples[0]); m_samples[0]->set_channels(2); m_samples[0]->set_samples_names(sample_names); m_samples[0]->add_route(ALL_OUTPUTS, "lspeaker", 1.0); SAMPLES(config, m_samples[1]); m_samples[1]->set_channels(2); m_samples[1]->set_samples_names(sample_names); m_samples[1]->add_route(ALL_OUTPUTS, "rspeaker", 1.0); } void m4_audio_device::device_start() { m_p1 = 0U; m_p2 = 0U; save_item(NAME(m_p1)); save_item(NAME(m_p2)); } /************************************* * * Clowns * * Discrete sound emulation: Mar 2005, D.R. * *************************************/ // nodes - inputs #define CLOWNS_POP_BOTTOM_EN NODE_01 #define CLOWNS_POP_MIDDLE_EN NODE_02 #define CLOWNS_POP_TOP_EN NODE_03 #define CLOWNS_SPRINGBOARD_HIT_EN NODE_04 #define CLOWNS_SPRINGBOARD_MISS_EN NODE_05 // nodes - sounds #define CLOWNS_NOISE NODE_06 #define CLOWNS_POP_SND NODE_07 #define CLOWNS_SB_HIT_SND NODE_08 #define CLOWNS_SB_MISS_SND NODE_09 // nodes - adjusters #define CLOWNS_R507_POT NODE_11 static discrete_op_amp_tvca_info const clowns_pop_tvca_info = { RES_M(2.7), // r304 RES_K(680), // r303 0, RES_K(680), // r305 RES_K(1), // j3 0, RES_K(470), // r300 RES_K(1), // j3 RES_K(510), // r301 RES_K(1), // j3 RES_K(680), // r302 CAP_U(.015), // c300 CAP_U(.1), // c301 CAP_U(.082), // c302 0, // no c4 5, // v1 5, // v2 5, // v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG1, DISC_OP_AMP_TRIGGER_FUNCTION_TRG2 }; static discrete_op_amp_osc_info const clowns_sb_hit_osc_info = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, RES_K(820), // r200 RES_K(33), // r203 RES_K(150), // r201 RES_K(240), // r204 RES_M(1), // r202 0, 0, 0, CAP_U(0.01), // c200 12 }; static discrete_op_amp_tvca_info const clowns_sb_hit_tvca_info = { RES_M(2.7), // r207 RES_K(680), // r205 0, RES_K(680), // r208 RES_K(1), // j3 0, RES_K(680), // r206 0,0,0,0, CAP_U(1), // c201 0, 0, 0, 5, // v1 0, // v2 0, // v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_mixer_desc const clowns_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(10), RES_K(10), RES_K(10) + 1.0 / (1.0 / RES_K(15) + 1.0 / RES_K(39)), RES_K(1) }, { 0, 0, 0, CLOWNS_R507_POT }, { 0, CAP_U(0.022), 0, 0 }, 0, RES_K(100), 0, CAP_U(1), 0, 1 }; static DISCRETE_SOUND_START(clowns_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(CLOWNS_POP_BOTTOM_EN) DISCRETE_INPUT_LOGIC(CLOWNS_POP_MIDDLE_EN) DISCRETE_INPUT_LOGIC(CLOWNS_POP_TOP_EN) DISCRETE_INPUT_LOGIC(CLOWNS_SPRINGBOARD_HIT_EN) DISCRETE_INPUT_LOGIC(CLOWNS_SPRINGBOARD_MISS_EN) // The low value of the pot is set to 7000. A real 1M pot will never go to 0 anyways. // This will give the control more apparent volume range. // The music way overpowers the rest of the sounds anyways. DISCRETE_ADJUSTMENT(CLOWNS_R507_POT, RES_M(1), 7000, DISC_LOGADJ, "R507") /************************************************ * Tone generator ************************************************/ MIDWAY_TONE_GENERATOR(midway_music_tvca_info) /************************************************ * Balloon hit sounds * The LFSR is the same as boothill ************************************************/ // Noise clock was breadboarded and measured at 7700Hz DISCRETE_LFSR_NOISE(CLOWNS_NOISE, 1, 1, 7700, 12.0, 0, 12.0/2, &midway_lfsr) DISCRETE_OP_AMP_TRIG_VCA(NODE_30, CLOWNS_POP_TOP_EN, CLOWNS_POP_MIDDLE_EN, CLOWNS_POP_BOTTOM_EN, CLOWNS_NOISE, 0, &clowns_pop_tvca_info) DISCRETE_RCFILTER(NODE_31, NODE_30, RES_K(15), CAP_U(.01)) DISCRETE_CRFILTER(NODE_32, NODE_31, RES_K(15) + RES_K(39), CAP_U(.01)) DISCRETE_GAIN(CLOWNS_POP_SND, NODE_32, RES_K(39)/(RES_K(15) + RES_K(39))) /************************************************ * Springboard hit ************************************************/ DISCRETE_OP_AMP_OSCILLATOR(NODE_40, 1, &clowns_sb_hit_osc_info) DISCRETE_OP_AMP_TRIG_VCA(NODE_41, CLOWNS_SPRINGBOARD_HIT_EN, 0, 0, NODE_40, 0, &clowns_sb_hit_tvca_info) // The rest of the circuit is a filter. The frequency response was calculated with SPICE. DISCRETE_FILTER2(NODE_42, 1, NODE_41, 500, 1.0/.8, DISC_FILTER_LOWPASS) // The filter has a gain of 0.5 DISCRETE_GAIN(CLOWNS_SB_HIT_SND, NODE_42, 0.5) /************************************************ * Springboard miss - INCOMPLETE ************************************************/ DISCRETE_CONSTANT(CLOWNS_SB_MISS_SND, 0) // Placeholder for incomplete sound /************************************************ * Combine all sound sources. ************************************************/ DISCRETE_MIXER4(NODE_91, 1, CLOWNS_SB_HIT_SND, CLOWNS_SB_MISS_SND, CLOWNS_POP_SND, MIDWAY_TONE_SND, &clowns_mixer) DISCRETE_OUTPUT(NODE_91, 11000) DISCRETE_SOUND_END static INPUT_PORTS_START(clowns_audio) PORT_START("R507") PORT_ADJUSTER( 40, "R507 - Music Volume" ) INPUT_PORTS_END clowns_audio_device::clowns_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : midway_tone_generator_device_base(mconfig, CLOWNS_AUDIO, tag, owner, clock), m_samples(*this, "samples"), m_ctrl_sel_out(*this), m_p1(0U), m_p2(0U) { } void clowns_audio_device::p1_w(u8 data) { u8 const changed(data ^ m_p1); m_p1 = data; machine().bookkeeping().coin_counter_w(0, BIT(data, 0)); if (BIT(changed, 1)) m_ctrl_sel_out(BIT(data, 1)); // D2-D7 are not connected } void clowns_audio_device::p2_w(u8 data) { u8 const rising(data & ~m_p2); m_p2 = data; m_discrete->write(CLOWNS_POP_BOTTOM_EN, BIT(data, 0)); m_discrete->write(CLOWNS_POP_MIDDLE_EN, BIT(data, 1)); m_discrete->write(CLOWNS_POP_TOP_EN, BIT(data, 2)); machine().sound().system_mute(!BIT(data, 3)); m_discrete->write(CLOWNS_SPRINGBOARD_HIT_EN, BIT(data, 4)); if (BIT(rising, 5)) m_samples->start(0, 0); // springboard miss // D6 and D7 are not connected } void clowns_audio_device::device_add_mconfig(machine_config &config) { static char const *const sample_names[] = { "*clowns", "miss", nullptr }; SPEAKER(config, "mono").front_center(); SAMPLES(config, m_samples); m_samples->set_channels(1); m_samples->set_samples_names(sample_names); m_samples->add_route(ALL_OUTPUTS, "mono", 0.70); DISCRETE(config, m_discrete, clowns_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.25); } ioport_constructor clowns_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(clowns_audio); } void clowns_audio_device::device_start() { m_ctrl_sel_out.resolve_safe(); m_p1 = 0U; m_p2 = 0U; save_item(NAME(m_p1)); save_item(NAME(m_p2)); } /************************************* * * Space Walk * * Discrete sound emulation: Oct 2009, D.R. * *************************************/ // Discrete Sound Input Nodes #define SPACWALK_TARGET_HIT_BOTTOM_EN NODE_01 #define SPACWALK_TARGET_HIT_MIDDLE_EN NODE_02 #define SPACWALK_TARGET_HIT_TOP_EN NODE_03 #define SPACWALK_SPRINGBOARD_HIT1_EN NODE_04 #define SPACWALK_SPRINGBOARD_HIT2_EN NODE_05 #define SPACWALK_SPRINGBOARD_MISS_EN NODE_06 #define SPACWALK_SPACE_SHIP_EN NODE_07 // Discrete Sound Output Nodes #define SPACWALK_NOISE NODE_10 #define SPACWALK_TARGET_HIT_SND NODE_11 #define SPACWALK_SPRINGBOARD_HIT1_SND NODE_12 #define SPACWALK_SPRINGBOARD_HIT2_SND NODE_13 #define SPACWALK_SPRINGBOARD_MISS_SND NODE_14 #define SPACWALK_SPACE_SHIP_SND NODE_15 // Adjusters #define SPACWALK_R507_POT NODE_19 // Parts List - Resistors #define SPACWALK_R200 RES_K(820) #define SPACWALK_R201 RES_K(150) #define SPACWALK_R202 RES_M(1) #define SPACWALK_R203 RES_K(82) #define SPACWALK_R204 RES_K(240) #define SPACWALK_R205 RES_K(220) #define SPACWALK_R206 RES_K(120) #define SPACWALK_R207 RES_M(1) #define SPACWALK_R208 RES_K(300) #define SPACWALK_R210 RES_K(56) #define SPACWALK_R211 RES_K(100) #define SPACWALK_R213 RES_K(300) #define SPACWALK_R214 RES_K(27) #define SPACWALK_R215 RES_K(51) #define SPACWALK_R216 RES_K(30) #define SPACWALK_R300 RES_K(270) #define SPACWALK_R301 RES_K(300) #define SPACWALK_R302 RES_K(330) #define SPACWALK_R303 RES_K(680) #define SPACWALK_R304 RES_M(1) #define SPACWALK_R305 RES_K(3680) #define SPACWALK_R307 RES_K(20) #define SPACWALK_R308 RES_K(20) // not labeled but it's beside R307 #define SPACWALK_R400 RES_K(1) #define SPACWALK_R401 RES_K(200) #define SPACWALK_R403 RES_K(51) #define SPACWALK_R404 RES_K(220) #define SPACWALK_R406 RES_M(1) #define SPACWALK_R407 RES_K(820) #define SPACWALK_R410 RES_K(47) #define SPACWALK_R411 RES_K(300) #define SPACWALK_R412 RES_K(330) #define SPACWALK_R413 RES_M(1) #define SPACWALK_R414 RES_M(1) #define SPACWALK_R416 RES_M(4.7) #define SPACWALK_R417 RES_K(10) #define SPACWALK_R418 RES_K(100) #define SPACWALK_R419 RES_K(2.7) #define SPACWALK_R420 RES_K(20) #define SPACWALK_R421 RES_K(11) #define SPACWALK_R422 RES_K(75) #define SPACWALK_R507 RES_M(1) #define SPACWALK_RJ3 RES_K(1) // Parts List - Capacitors #define SPACWALK_C200 CAP_U(0.0022) #define SPACWALK_C201 CAP_U(3.3) #define SPACWALK_C203 CAP_U(0.0033) #define SPACWALK_C204 CAP_U(0.0033) #define SPACWALK_C300 CAP_U(2.2) #define SPACWALK_C301 CAP_U(2.2) #define SPACWALK_C302 CAP_U(2.2) #define SPACWALK_C303 CAP_U(0.0047) #define SPACWALK_C304 CAP_U(0.0047) // not labeled but it's beside C303 #define SPACWALK_C401 CAP_U(1) #define SPACWALK_C402 CAP_U(0.68) #define SPACWALK_C403 CAP_U(0.0022) #define SPACWALK_C451 CAP_U(0.001) #define SPACWALK_C452 CAP_U(0.001) #define SPACWALK_C453 CAP_U(0.001) #define SPACWALK_C602 CAP_U(1) static discrete_op_amp_tvca_info const spacwalk_hit_tvca_info = { SPACWALK_R304, SPACWALK_R303, 0, SPACWALK_R305, // r1, r2, r3, r4 SPACWALK_RJ3, 0, SPACWALK_R300, // r5, r6, r7 SPACWALK_RJ3, SPACWALK_R301, // r8, r9 SPACWALK_RJ3, SPACWALK_R302, // r10, r11 SPACWALK_C300, SPACWALK_C301, SPACWALK_C302, 0, // c1, c2, c3, c4 5, 5, 5, 12, // v1, v2, v3, vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG1, DISC_OP_AMP_TRIGGER_FUNCTION_TRG2 }; static discrete_op_amp_osc_info const spacwalk_sb_hit_vco = { DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON, RES_K(330 + 150 + 30), SPACWALK_R203, SPACWALK_R201, SPACWALK_R204, // r1, r2, r3, r4 SPACWALK_R202, 0, SPACWALK_R200, 0, // r5, r6, r7, r8 SPACWALK_C200, 12 // c, vP }; static discrete_op_amp_tvca_info const spacwalk_sb_hit_tvca_info = { SPACWALK_R207, SPACWALK_R205, 0, SPACWALK_R208, // r1, r2, r3, r4 SPACWALK_RJ3, 0, SPACWALK_R206, // r5, r6, r7 0, 0, 0, 0 , // r8, r9, r10, r11 SPACWALK_C201, 0, 0, 0, // c1, c2, c3, c4 5, 0, 0, 12, // v1, v2, v3, vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_integrate_info const spacwalk_sb_miss_integrate = { DISC_INTEGRATE_OP_AMP_1 | DISC_OP_AMP_IS_NORTON, SPACWALK_R406, SPACWALK_R401, 0, SPACWALK_C402, // r1, r2, r3, c 12, 12, // v1, vP 0, 0, 0 // f0, f1, f2 }; static discrete_op_amp_osc_info const spacwalk_sb_miss_vco = { DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, SPACWALK_R407, SPACWALK_R412, SPACWALK_R410, SPACWALK_R411, SPACWALK_R413, 0, 0, 0, // r1, r2, r3, r4, r5, r6, r7, r8 SPACWALK_C403, 12 // c, vP }; static discrete_op_amp_filt_info const spacwalk_sb_miss_filter = { // we use r1, not r2 because vref is taken into acount by the CRFILTER SPACWALK_R417, 0, SPACWALK_R414, 0, SPACWALK_R416, // r1, r2, r3, r4, rF SPACWALK_C451, SPACWALK_C452, 0, // c1, c2, c3 0, 12, 0 // vRef, vP, vN }; static discrete_op_amp_info const spacwalk_sb_miss_amp = { DISC_OP_AMP_IS_NORTON, SPACWALK_R418, SPACWALK_R404, 0, SPACWALK_R403, /* r1, r2, r3, r4 */ 0, /* c */ 0, 12, /* vN, vP */ }; static discrete_op_amp_osc_info const spacwalk_spaceship_osc = { DISC_OP_AMP_OSCILLATOR_2 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_K(75), RES_M(1), RES_M(6.8), RES_M(2.4), 0, 0, 0, 0, // r1, r2, r3, r4, r5, r6, r7, r8 CAP_U(2.2), 12 // c, vP }; static discrete_op_amp_osc_info const spacwalk_spaceship_vco = { DISC_OP_AMP_OSCILLATOR_VCO_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_K(680), RES_K(300), RES_K(100), RES_K(150), RES_K(120), 0, 0, 0, // r1, r2, r3, r4, r5, r6, r7, r8 CAP_U(0.0012), 12 // c, vP }; static discrete_mixer_desc const spacwalk_mixer = { DISC_MIXER_IS_RESISTOR, {SPACWALK_R422, SPACWALK_R422, RES_K(39 + 10 + 1), SPACWALK_R421, SPACWALK_R420, SPACWALK_R419}, {0, 0, 0, 0, 0, SPACWALK_R507_POT}, // r_nodes {0}, 0, 0, 0, SPACWALK_C602, 0, 1 // c, rI, rF, cF, cAmp, vRef, gain }; /************************************************ * Springboard Hit Circuit 1 or 2 ************************************************/ #define SPACWALK_SPRINGBOARD_HIT_CIRCUIT(_num) \ DISCRETE_RCFILTER(NODE_RELATIVE(NODE_29, _num), \ SPACWALK_NOISE, /* IN0 */ \ RES_K(330), CAP_U(.1)) \ DISCRETE_RCFILTER(NODE_RELATIVE(NODE_31, _num), \ NODE_RELATIVE(NODE_29, _num), /* IN0 */ \ RES_K(330) + RES_K(150), CAP_U(.1)) \ DISCRETE_OP_AMP_VCO1(NODE_RELATIVE(NODE_33, _num), /* IC M2-3, pin 5 */ \ 1, /* ENAB */ \ NODE_RELATIVE(NODE_31, _num), /* VMOD1 */ \ &spacwalk_sb_hit_vco) \ DISCRETE_OP_AMP_TRIG_VCA(NODE_RELATIVE(NODE_35, _num), /* IC M2-3, pin 9 */ \ NODE_RELATIVE(SPACWALK_SPRINGBOARD_HIT1_EN, _num - 1), 0, 0, /* TRG0, TRG1, TRG2 */ \ NODE_RELATIVE(NODE_33, _num), 0, /* IN0, IN1 */ \ &spacwalk_sb_hit_tvca_info) \ /* Wrong values. Untested */ \ /* The rest of the circuit is a filter. */ \ DISCRETE_FILTER2(NODE_RELATIVE(NODE_37, _num), \ 1, /* ENAB */ \ NODE_RELATIVE(NODE_35, _num), /* INP0 */ \ 2000.0 - _num * 500, 1.0/.8, /* FREQ, DAMP */ \ DISC_FILTER_LOWPASS) \ /* The filter has a gain of 0.5 */ \ DISCRETE_GAIN(NODE_RELATIVE(SPACWALK_SPRINGBOARD_HIT1_SND, _num - 1), \ NODE_RELATIVE(NODE_37, _num), 0.5) static DISCRETE_SOUND_START(spacwalk_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(SPACWALK_TARGET_HIT_BOTTOM_EN) DISCRETE_INPUT_LOGIC(SPACWALK_TARGET_HIT_MIDDLE_EN) DISCRETE_INPUT_LOGIC(SPACWALK_TARGET_HIT_TOP_EN) DISCRETE_INPUT_LOGIC(SPACWALK_SPRINGBOARD_HIT1_EN) DISCRETE_INPUT_LOGIC(SPACWALK_SPRINGBOARD_HIT2_EN) DISCRETE_INPUT_LOGIC(SPACWALK_SPRINGBOARD_MISS_EN) DISCRETE_INPUT_LOGIC(SPACWALK_SPACE_SHIP_EN) // The low value of the pot is set to 7000. A real 1M pot will never go to 0 anyways. // This will give the control more apparent volume range. // The music way overpowers the rest of the sounds anyways. DISCRETE_ADJUSTMENT(SPACWALK_R507_POT, SPACWALK_R507, 7000, DISC_LOGADJ, "R507") /************************************************ * Tone generator ************************************************/ MIDWAY_TONE_GENERATOR(midway_music_tvca_info) /************************************************ * Target hit sounds * The LFSR is the same as boothill ************************************************/ // Noise clock was breadboarded and measured at 7700Hz DISCRETE_LFSR_NOISE(SPACWALK_NOISE, // IC L4, pin 10 1, 1, // ENAB, RESET 7700, 12.0, 0, 12.0/2, &midway_lfsr) // CLK,AMPL,FEED,BIAS,LFSRTB DISCRETE_OP_AMP_TRIG_VCA(NODE_20, // IC K3, pin 9 SPACWALK_TARGET_HIT_TOP_EN, SPACWALK_TARGET_HIT_MIDDLE_EN, SPACWALK_TARGET_HIT_BOTTOM_EN, SPACWALK_NOISE, 0, // IN0, IN1 &spacwalk_hit_tvca_info) DISCRETE_RCFILTER(NODE_21, NODE_20, // IN0 SPACWALK_R307, SPACWALK_C303) DISCRETE_RCFILTER(SPACWALK_TARGET_HIT_SND, NODE_21, // IN0 SPACWALK_R307 + SPACWALK_R308, SPACWALK_C304) /************************************************ * Springboard hit sounds ************************************************/ /* Nodes 30 - 40 */ SPACWALK_SPRINGBOARD_HIT_CIRCUIT(1) SPACWALK_SPRINGBOARD_HIT_CIRCUIT(2) /************************************************ * Springboard miss sound ************************************************/ DISCRETE_RCDISC2(NODE_50, // voltage on C401 SPACWALK_SPRINGBOARD_MISS_EN, // SWITCH OP_AMP_NORTON_VBE, RES_2_PARALLEL(SPACWALK_R401, SPACWALK_R407), // INP0,RVAL0 12.0 - .5, SPACWALK_R400, // INP1,RVAL1 SPACWALK_C401) DISCRETE_INTEGRATE(NODE_51, // IC K4, pin 9 NODE_50, 0, // TRG0,TRG1 &spacwalk_sb_miss_integrate) DISCRETE_OP_AMP_VCO1(NODE_52, // IC K4, pin 5 1, // ENAB NODE_50, // VMOD1 &spacwalk_sb_miss_vco) DISCRETE_CRFILTER(NODE_53, NODE_52, // IN0 SPACWALK_R417, SPACWALK_C453) // this filter type probably does not work right. I need to test it. DISCRETE_OP_AMP_FILTER(NODE_54, // IC K3, pin 5 1, // ENAB NODE_53, 0, // INP0,INP1 DISC_OP_AMP_FILTER_IS_BAND_PASS_1M | DISC_OP_AMP_IS_NORTON, &spacwalk_sb_miss_filter) DISCRETE_OP_AMP(SPACWALK_SPRINGBOARD_MISS_SND, // IC K4, pin 10 1, // ENAB NODE_54, NODE_51, // IN0,IN1 &spacwalk_sb_miss_amp) /************************************************ * Space ship sound ************************************************/ DISCRETE_OP_AMP_OSCILLATOR(NODE_60, // voltage on 2.2uF cap near IC JK-2 1, // ENAB &spacwalk_spaceship_osc) DISCRETE_OP_AMP_VCO1(NODE_61, // IC JK-2, pin 5 SPACWALK_SPACE_SHIP_EN, // ENAB NODE_60, // VMOD1 &spacwalk_spaceship_vco) DISCRETE_RCFILTER(NODE_62, NODE_61, // IN0 RES_K(1), CAP_U(0.15)) DISCRETE_RCFILTER(SPACWALK_SPACE_SHIP_SND, NODE_62, // IN0 RES_K(1) + RES_K(10), CAP_U(0.015)) /************************************************ * Combine all sound sources. ************************************************/ DISCRETE_MIXER6(NODE_90, 1, // ENAB SPACWALK_SPRINGBOARD_HIT1_SND, SPACWALK_SPRINGBOARD_HIT2_SND, SPACWALK_SPACE_SHIP_SND, SPACWALK_SPRINGBOARD_MISS_SND, SPACWALK_TARGET_HIT_SND, MIDWAY_TONE_SND, &spacwalk_mixer) DISCRETE_OUTPUT(NODE_90, 11000) DISCRETE_SOUND_END static INPUT_PORTS_START(spacwalk_audio) PORT_START("R507") PORT_ADJUSTER( 40, "R507 - Music Volume" ) INPUT_PORTS_END spacwalk_audio_device::spacwalk_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : midway_tone_generator_device_base(mconfig, SPACWALK_AUDIO, tag, owner, clock), m_ctrl_sel_out(*this), m_p1(0U) { } void spacwalk_audio_device::p1_w(u8 data) { u8 const changed(data ^ m_p1); m_p1 = data; machine().bookkeeping().coin_counter_w(0, BIT(data, 0)); if (BIT(changed, 1)) m_ctrl_sel_out(BIT(data, 1)); machine().sound().system_mute(!BIT(data, 2)); m_discrete->write(SPACWALK_SPACE_SHIP_EN, (data >> 3) & 0x01); } void spacwalk_audio_device::p2_w(u8 data) { m_discrete->write(SPACWALK_TARGET_HIT_BOTTOM_EN, (data >> 0) & 0x01); m_discrete->write(SPACWALK_TARGET_HIT_MIDDLE_EN, (data >> 1) & 0x01); m_discrete->write(SPACWALK_TARGET_HIT_TOP_EN, (data >> 2) & 0x01); m_discrete->write(SPACWALK_SPRINGBOARD_HIT1_EN, (data >> 3) & 0x01); m_discrete->write(SPACWALK_SPRINGBOARD_HIT2_EN, (data >> 4) & 0x01); m_discrete->write(SPACWALK_SPRINGBOARD_MISS_EN, (data >> 5) & 0x01); } void spacwalk_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, spacwalk_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 1.0); } ioport_constructor spacwalk_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(spacwalk_audio); } void spacwalk_audio_device::device_start() { m_ctrl_sel_out.resolve(); m_p1 = 0U; save_item(NAME(m_p1)); } /************************************* * * Dog Patch * * Discrete sound emulation: * Sept 2011, D.R. * *************************************/ // nodes - inputs #define DOGPATCH_GAME_ON_EN NODE_01 #define DOGPATCH_LEFT_SHOT_EN NODE_02 #define DOGPATCH_RIGHT_SHOT_EN NODE_03 #define DOGPATCH_HIT_EN NODE_04 #define DOGPATCH_PAN_DATA NODE_05 // nodes - sounds #define DOGPATCH_NOISE NODE_06 #define DOGPATCH_L_SHOT_SND NODE_07 #define DOGPATCH_R_SHOT_SND NODE_08 #define DOGPATCH_HIT_SND NODE_09 #define DOGPATCH_L_HIT_SND NODE_10 #define DOGPATCH_R_HIT_SND NODE_11 static discrete_op_amp_tvca_info const dogpatch_shot_tvca_info = { RES_M(2.7), RES_K(510), 0, RES_K(510), RES_K(10), 0, RES_K(510), 0, 0, 0, 0, CAP_U(0.22), 0, 0, 0, 12, 0, 0, 12, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE, DISC_OP_AMP_TRIGGER_FUNCTION_NONE }; static discrete_mixer_desc const dogpatch_l_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(12) + RES_K(68) + RES_K(33), RES_K(33) }, { 0 }, { 0 }, 0, RES_K(100), 0, CAP_U(0.1), 0, 1 // final gain }; static discrete_mixer_desc const dogpatch_r_mixer = { DISC_MIXER_IS_OP_AMP, { RES_K(12) + RES_K(68) + RES_K(33), RES_K(33), RES_K(510) + RES_K(33) }, { 0 }, { 0 }, 0, RES_K(100), 0, CAP_U(0.1), 0, 1 // final gain }; static DISCRETE_SOUND_START(dogpatch_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(DOGPATCH_GAME_ON_EN) DISCRETE_INPUT_LOGIC(DOGPATCH_LEFT_SHOT_EN) DISCRETE_INPUT_LOGIC(DOGPATCH_RIGHT_SHOT_EN) DISCRETE_INPUT_LOGIC(DOGPATCH_HIT_EN) /************************************************ * Tone generator ************************************************/ MIDWAY_TONE_GENERATOR(midway_music_tvca_info) // Noise clock was breadboarded and measured at 7700Hz DISCRETE_LFSR_NOISE(DOGPATCH_NOISE, 1, 1, 7700, 12.0, 0, 12.0/2, &midway_lfsr) /************************************************ * Shot sounds ************************************************/ DISCRETE_OP_AMP_TRIG_VCA(NODE_20, DOGPATCH_LEFT_SHOT_EN, 0, 0, DOGPATCH_NOISE, 0, &dogpatch_shot_tvca_info) DISCRETE_RCFILTER(NODE_21, NODE_20, RES_K(12), CAP_U(.01)) DISCRETE_RCFILTER(DOGPATCH_L_SHOT_SND, NODE_21, RES_K(12) + RES_K(68), CAP_U(.0022)) DISCRETE_OP_AMP_TRIG_VCA(NODE_30, DOGPATCH_RIGHT_SHOT_EN, 0, 0, DOGPATCH_NOISE, 0, &dogpatch_shot_tvca_info) DISCRETE_RCFILTER(NODE_31, NODE_30, RES_K(12), CAP_U(.01)) DISCRETE_RCFILTER(DOGPATCH_R_SHOT_SND, NODE_31, RES_K(12) + RES_K(68), CAP_U(.0033)) /************************************************ * Target hit sounds ************************************************/ DISCRETE_CONSTANT(DOGPATCH_L_HIT_SND, 0) DISCRETE_CONSTANT(DOGPATCH_R_HIT_SND, 0) /************************************************ * Combine all sound sources. ************************************************/ /* There is a 1uF cap on the input to the amp that I was too lazy to simulate. * It is just a DC blocking cap needed by the Norton amp. Doing the extra * work to simulate it is not going to make a difference to the waveform * or to how it sounds. Also I use a regular amp in place of the Norton * for the same reasons. Ease of coding/simulation. */ DISCRETE_MIXER2(NODE_91, DOGPATCH_GAME_ON_EN, DOGPATCH_L_SHOT_SND, DOGPATCH_L_HIT_SND, &dogpatch_l_mixer) // Music is only added to the right channel per schematics // This should be verified on the real game DISCRETE_MIXER3(NODE_92, DOGPATCH_GAME_ON_EN, DOGPATCH_R_SHOT_SND, DOGPATCH_R_HIT_SND, MIDWAY_TONE_SND, &dogpatch_r_mixer) DISCRETE_OUTPUT(NODE_91, 32760.0 / 5.8) DISCRETE_OUTPUT(NODE_92, 32760.0 / 5.8) DISCRETE_SOUND_END dogpatch_audio_device::dogpatch_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : midway_tone_generator_device_base(mconfig, DOGPATCH_AUDIO, tag, owner, clock) { } void dogpatch_audio_device::write(u8 data) { // D0, D1 and D7 are not used machine().bookkeeping().coin_counter_w(0, BIT(data, 2)); machine().sound().system_mute(!BIT(data, 3)); m_discrete->write(DOGPATCH_GAME_ON_EN, BIT(data, 3)); m_discrete->write(DOGPATCH_LEFT_SHOT_EN, BIT(data, 4)); m_discrete->write(DOGPATCH_RIGHT_SHOT_EN, BIT(data, 5)); m_discrete->write(DOGPATCH_HIT_EN, BIT(data, 6)); } void dogpatch_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "lspeaker").front_left(); SPEAKER(config, "rspeaker").front_right(); DISCRETE(config, m_discrete, dogpatch_discrete); m_discrete->add_route(0, "lspeaker", 1.0); m_discrete->add_route(1, "rspeaker", 1.0); } void dogpatch_audio_device::device_start() { } /************************************* * * Space Encounters * * Discrete sound emulation: * Apr 2007, D.R. *************************************/ // nodes - inputs #define SPCENCTR_ENEMY_SHIP_SHOT_EN NODE_01 #define SPCENCTR_PLAYER_SHOT_EN NODE_02 #define SPCENCTR_SCREECH_EN NODE_03 #define SPCENCTR_CRASH_EN NODE_04 #define SPCENCTR_EXPLOSION_EN NODE_05 #define SPCENCTR_BONUS_EN NODE_06 #define SPCENCTR_WIND_DATA NODE_07 // nodes - sounds #define SPCENCTR_NOISE NODE_10 #define SPCENCTR_ENEMY_SHIP_SHOT_SND NODE_11 #define SPCENCTR_PLAYER_SHOT_SND NODE_12 #define SPCENCTR_SCREECH_SND NODE_13 #define SPCENCTR_CRASH_SND NODE_14 #define SPCENCTR_EXPLOSION_SND NODE_15 #define SPCENCTR_BONUS_SND NODE_16 #define SPCENCTR_WIND_SND NODE_17 static discrete_op_amp_info const spcenctr_enemy_ship_shot_op_amp_E1 = { DISC_OP_AMP_IS_NORTON, 0, // no r1 RES_K(510), // R100 RES_M(2.2), // R101 RES_M(2.2), // R102 CAP_U(0.1), // C100 0, // vN 12 // vP }; static discrete_op_amp_osc_info const spcenctr_enemy_ship_shot_op_amp_osc = { DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, RES_K(560), // R103 RES_K(7.5), // R118 RES_K(22), // R104 RES_K(47), // R106 RES_K(100), // R105 0, // no r6 0, // no r7 0, // no r8 CAP_U(0.0022), // C101 12, // vP }; static discrete_op_amp_info const spcenctr_enemy_ship_shot_op_amp_D1 = { DISC_OP_AMP_IS_NORTON, RES_K(100), // R107 RES_K(100), // R109 RES_M(2.7), // R108 RES_K(100), // R110 0, // no c 0, // vN 12 // vP }; static discrete_op_amp_filt_info const spcenctr_enemy_ship_shot_filt = { RES_K(100), // R112 RES_K(10), // R113 RES_M(4.3), // r3 0, // no r4 RES_M(2.2), // R114 CAP_U(0.001), // c1 CAP_U(0.001), // c2 0, // no c3 0, // vRef 12, // vP 0 // vN }; static discrete_op_amp_1sht_info const spcenctr_player_shot_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R500 RES_K(100), // R502 RES_M(1), // R501 RES_M(1), // R503 RES_M(2.2), // R504 CAP_U(1), // C500 CAP_P(470), // C501 0, // vN 12 // vP }; static discrete_op_amp_info const spcenctr_player_shot_op_amp_E1 = { DISC_OP_AMP_IS_NORTON, 0, // no r1 RES_K(10), // R505 RES_M(1.5), // R506 0, // no r4 CAP_U(0.22), // C502 0, // vN 12 // vP }; static discrete_op_amp_osc_info const spcenctr_player_shot_op_amp_osc = { DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, 1.0 / (1.0 / RES_M(1) + 1.0 / RES_K(330)) + RES_M(1.5), // R507||R509 + R508 RES_M(1), // R513 RES_K(560), // R512 RES_M(2.7), // R516 RES_M(1), // R515 RES_M(4.7), // R510 RES_M(3.3), // R511 0, // no r8 CAP_P(330), // C504 12, // vP }; static discrete_op_amp_info const spcenctr_player_shot_op_amp_C1 = { DISC_OP_AMP_IS_NORTON, RES_K(560), // R517 RES_K(470), // R514 RES_M(2.7), // R518 RES_K(560), // R524 0, // no c 0, // vN 12 // vP }; static discrete_op_amp_tvca_info const spcenctr_player_shot_tvca = { RES_M(2.7), // R522 RES_K(560), // R521 0, // no r3 RES_K(560), // R560 RES_K(1), // R42 0, // no r6 RES_K(560), // R523 0, // no r8 0, // no r9 0, // no r10 0, // no r11 CAP_U(1), // C506 0, // no c2 0, 0, // no c3, c4 12, // v1 0, // no v2 0, // no v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f0 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f1 DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, // f2 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f3 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f4 DISC_OP_AMP_TRIGGER_FUNCTION_NONE // no f5 }; static discrete_op_amp_tvca_info const spcenctr_crash_tvca = { RES_M(2.7), // R302 RES_K(470), // R300 0, // no r3 RES_K(470), // R303 RES_K(1), // R56 0, // no r6 RES_K(470), // R301 0, // no r8 0, // no r9 0, // no r10 0, // no r11 CAP_U(2.2), // C304 0, // no c2 0, 0, // no c3, c4 5, // v1 0, // no v2 0, // no v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f0 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f1 DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, // f2 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f3 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f4 DISC_OP_AMP_TRIGGER_FUNCTION_NONE // no f5 }; static discrete_op_amp_tvca_info const spcenctr_explosion_tvca = { RES_M(2.7), // R402 RES_K(680), // R400 0, // no r3 RES_K(680), // R403 RES_K(1), // R41 0, // no r6 RES_K(680), // R401 0, // no r8 0, // no r9 0, // no r10 0, // no r11 CAP_U(2.2), // C400 0, // no c2 0, 0, // no c3, c4 12, // v1 0, // no v2 0, // no v3 12, // vP DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f0 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f1 DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, // f2 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f3 DISC_OP_AMP_TRIGGER_FUNCTION_NONE, // no f4 DISC_OP_AMP_TRIGGER_FUNCTION_NONE // no f5 }; static const discrete_555_desc spcenctr_555_bonus = { DISC_555_OUT_SQW | DISC_555_OUT_DC, 5, // B+ voltage of 555 DEFAULT_555_VALUES }; static const discrete_mixer_desc spcenctr_mixer = { DISC_MIXER_IS_RESISTOR, // type { RES_K(15), // R117 RES_K(15), // R526 RES_K(22), // R211 RES_K(3.6), // R309 RES_K(1.8) + RES_K(3.6) + RES_K(4.7), // R405 + R406 + R407 RES_K(27), // R715 RES_K(27)}, // R51 {0}, // no rNode{} { 0, CAP_U(0.001), // C505 CAP_U(0.1), // C202 CAP_U(1), // C303 0, 0, CAP_U(10)}, // C16 0, // no rI 0, // no rF 0, // no cF CAP_U(1), // C900 0, // vRef = ground 1 // gain }; static DISCRETE_SOUND_START(spcenctr_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUTX_LOGIC(SPCENCTR_ENEMY_SHIP_SHOT_EN, 12, 0, 0) DISCRETE_INPUTX_LOGIC(SPCENCTR_PLAYER_SHOT_EN, 12, 0, 0) DISCRETE_INPUT_LOGIC (SPCENCTR_SCREECH_EN) DISCRETE_INPUT_LOGIC (SPCENCTR_CRASH_EN) DISCRETE_INPUT_LOGIC (SPCENCTR_EXPLOSION_EN) DISCRETE_INPUT_LOGIC (SPCENCTR_BONUS_EN) DISCRETE_INPUT_DATA (SPCENCTR_WIND_DATA) /************************************************ * Noise Generator ************************************************/ // Noise clock was breadboarded and measured at 7515 DISCRETE_LFSR_NOISE(SPCENCTR_NOISE, // IC A0, pin 10 1, // ENAB 1, // no RESET 7515, // CLK in Hz 12, // p-p AMPL 0, // no FEED input 12.0/2, // dc BIAS &midway_lfsr) /************************************************ * Enemy Ship Shot ************************************************/ DISCRETE_OP_AMP(NODE_20, // IC E1, pin 10 1, // ENAB 0, // no IN0 SPCENCTR_ENEMY_SHIP_SHOT_EN, // IN1 &spcenctr_enemy_ship_shot_op_amp_E1) DISCRETE_OP_AMP_VCO1(NODE_21, // IC D1, pin 5 1, // ENAB NODE_20, // VMOD1 &spcenctr_enemy_ship_shot_op_amp_osc) DISCRETE_OP_AMP(NODE_22, // IC D1, pin 9 1, // ENAB NODE_21, // IN0 NODE_20, // IN1 &spcenctr_enemy_ship_shot_op_amp_D1) DISCRETE_OP_AMP_FILTER(NODE_23, // IC D1, pin 10 1, // ENAB NODE_22, // INP0 0, // no INP1 DISC_OP_AMP_FILTER_IS_BAND_PASS_1M | DISC_OP_AMP_IS_NORTON, &spcenctr_enemy_ship_shot_filt) DISCRETE_CRFILTER(SPCENCTR_ENEMY_SHIP_SHOT_SND, NODE_23, // IN0 RES_K(1.8), // R116 CAP_U(0.1) ) // C104 /************************************************ * Player Shot ************************************************/ DISCRETE_OP_AMP_ONESHOT(NODE_30, // IC E1, pin 4 SPCENCTR_PLAYER_SHOT_EN, // TRIG &spcenctr_player_shot_1sht) // breadboarded and scoped at 325mS DISCRETE_OP_AMP(NODE_31, // IC E1, pin 5 1, // ENAB 0, // no IN0 NODE_30, // IN1 &spcenctr_player_shot_op_amp_E1) // next 2 modules simulate the D502 voltage drop DISCRETE_ADDER2(NODE_32, 1, // ENAB NODE_31, // IN0 -0.5) // IN1 DISCRETE_CLAMP(NODE_33, NODE_32, // IN0 0, // MIN 12) // MAX DISCRETE_CRFILTER(NODE_34, SPCENCTR_NOISE, // IN0 RES_M(1) + RES_K(330), // R507, R509 CAP_U(0.1) ) // C503 DISCRETE_GAIN(NODE_35, NODE_34, // IN0 RES_K(330)/(RES_M(1) + RES_K(330))) // GAIN - R507 : R509 DISCRETE_OP_AMP_VCO2(NODE_36, // IC C1, pin 4 1, // ENAB NODE_35, // VMOD1 NODE_33, // VMOD2 &spcenctr_player_shot_op_amp_osc) DISCRETE_OP_AMP(NODE_37, // IC C1, pin 9 1, // ENAB NODE_36, // IN0 NODE_33, // IN1 &spcenctr_player_shot_op_amp_C1) DISCRETE_OP_AMP_TRIG_VCA(SPCENCTR_PLAYER_SHOT_SND, // IC C1, pin 10 SPCENCTR_PLAYER_SHOT_EN, // TRG0 0, // no TRG1 0, // no TRG2 NODE_37, // IN0 0, // no IN1 &spcenctr_player_shot_tvca) /************************************************ *Screech - unemulated ************************************************/ DISCRETE_CONSTANT(SPCENCTR_SCREECH_SND, 0) /************************************************ * Crash ************************************************/ DISCRETE_OP_AMP_TRIG_VCA(NODE_60, // IC C2, pin 4 SPCENCTR_CRASH_EN, // TRG0 0, // no TRG1 0, // no TRG2 SPCENCTR_NOISE, // IN0 0, // no IN1 &spcenctr_crash_tvca) // The next 5 modules emulate the filter. // The DC level was breadboarded and the frequency response was SPICEd DISCRETE_ADDER2(NODE_61, // center on filter DC level 1, // ENAB NODE_60, // IN0 -6.8) // IN1 DISCRETE_FILTER2(NODE_62, 1, // ENAB NODE_61, // INP0 130, // FREQ 1.0 / 8, // DAMP DISC_FILTER_BANDPASS) DISCRETE_GAIN(NODE_63, NODE_62, // IN0 6) // GAIN DISCRETE_ADDER2(NODE_64, // center on filter DC level 1, // ENAB NODE_63, // IN0 6.8) // IN1 DISCRETE_CLAMP(SPCENCTR_CRASH_SND, // IC C2, pin 5 NODE_64, // IN0 0, // MIN 12.0 - OP_AMP_NORTON_VBE) // MAX /************************************************ * Explosion ************************************************/ DISCRETE_OP_AMP_TRIG_VCA(NODE_70, // IC D2, pin 10 SPCENCTR_EXPLOSION_EN, // TRG0 0, // no TRG1 0, // no TRG2 SPCENCTR_NOISE, // IN0 0, // no IN1 &spcenctr_explosion_tvca) DISCRETE_RCFILTER(NODE_71, NODE_70, // IN0 RES_K(1.8), // R405 CAP_U(0.22) ) // C401 DISCRETE_RCFILTER(SPCENCTR_EXPLOSION_SND, NODE_71, // IN0 RES_K(1.8) + RES_K(3.6), // R405 + R406 CAP_U(0.22) ) // C402 /************************************************ *Bonus ************************************************/ DISCRETE_555_ASTABLE(NODE_80, // pin 5 // the pin 4 reset is not connected in schematic, but should be SPCENCTR_BONUS_EN, // RESET RES_K(1), // R710 RES_K(27), // R711 CAP_U(0.047), // C710 &spcenctr_555_bonus) DISCRETE_555_ASTABLE(NODE_81, // pin 9 SPCENCTR_BONUS_EN, // RESET pin 10 RES_K(100), // R713 RES_K(47), // R714 CAP_U(1), // C713 &spcenctr_555_bonus) DISCRETE_LOGIC_AND3(NODE_82, // IC C-D, pin 6 NODE_80, // INP0 NODE_81, // INP1 SPCENCTR_BONUS_EN) // INP2 DISCRETE_GAIN(SPCENCTR_BONUS_SND, // adjust from logic to TTL voltage level NODE_82, // IN0 DEFAULT_TTL_V_LOGIC_1) // GAIN /************************************************ *Wind - unemulated ************************************************/ DISCRETE_CONSTANT(SPCENCTR_WIND_SND, 0) /************************************************ * Final mix ************************************************/ DISCRETE_MIXER7(NODE_91, 1, // ENAB SPCENCTR_ENEMY_SHIP_SHOT_SND, // IN0 SPCENCTR_PLAYER_SHOT_SND, // IN1 SPCENCTR_SCREECH_SND, // IN2 SPCENCTR_CRASH_SND, // IN3 SPCENCTR_EXPLOSION_SND, // IN4 SPCENCTR_BONUS_SND, // IN5 SPCENCTR_WIND_SND, // IN6 &spcenctr_mixer) DISCRETE_OUTPUT(NODE_91, 20000) DISCRETE_SOUND_END spcenctr_audio_device::spcenctr_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, SPCENCTR_AUDIO, tag, owner, clock), m_sn(*this, "snsnd"), m_discrete(*this, "discrete"), m_lamp(*this, "LAMP"), m_strobe(*this, "STROBE"), m_strobe_timer(nullptr), m_strobe_enable(0U) { } void spcenctr_audio_device::p1_w(u8 data) { machine().sound().system_mute(!BIT(data, 0)); // D1 is marked as 'OPTIONAL SWITCH VIDEO FOR COCKTAIL', but it is never set by the software m_discrete->write(SPCENCTR_CRASH_EN, BIT(data, 2)); // D3-D7 are not connected } void spcenctr_audio_device::p2_w(u8 data) { // set WIND SOUND FREQ(data & 0x0f) 0, if no wind m_discrete->write(SPCENCTR_EXPLOSION_EN, BIT(data, 4)); m_discrete->write(SPCENCTR_PLAYER_SHOT_EN, BIT(data, 5)); // D6 and D7 are not connected } void spcenctr_audio_device::p3_w(u8 data) { // if (data & 0x01) enable SCREECH (hit the sides) sound m_discrete->write(SPCENCTR_ENEMY_SHIP_SHOT_EN, BIT(data, 1)); m_strobe_enable = BIT(data, 2); m_lamp = BIT(data, 3); m_discrete->write(SPCENCTR_BONUS_EN, BIT(data, 4)); m_sn->enable_w(BIT(data, 5)); // D6 and D7 are not connected } void spcenctr_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "mono").front_center(); SN76477(config, m_sn); m_sn->set_noise_params(0, 0, 0); m_sn->set_decay_res(0); m_sn->set_attack_params(0, RES_K(100)); m_sn->set_amp_res(RES_K(56)); m_sn->set_feedback_res(RES_K(10)); m_sn->set_vco_params(0, CAP_U(0.047), RES_K(56)); m_sn->set_pitch_voltage(5.0); m_sn->set_slf_params(CAP_U(1.0), RES_K(150)); m_sn->set_oneshot_params(0, 0); m_sn->set_vco_mode(1); m_sn->set_mixer_params(0, 0, 0); m_sn->set_envelope_params(1, 0); m_sn->set_enable(1); m_sn->add_route(ALL_OUTPUTS, "mono", 0.20); DISCRETE(config, m_discrete, spcenctr_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.45); } void spcenctr_audio_device::device_start() { m_lamp.resolve(); m_strobe.resolve(); m_strobe_timer = timer_alloc(FUNC(spcenctr_audio_device::strobe_callback), this); m_strobe_enable = 0U; save_item(NAME(m_strobe_enable)); strobe_callback(0); } TIMER_CALLBACK_MEMBER(spcenctr_audio_device::strobe_callback) { constexpr double STROBE_FREQ = 9.00; // Hz - calculated from the 555 timer constexpr u32 STROBE_DUTY_CYCLE = 95; // % m_strobe = (param && m_strobe_enable) ? 1 : 0; m_strobe_timer->adjust( attotime::from_hz(STROBE_FREQ) * (param ? (100 - STROBE_DUTY_CYCLE) : STROBE_DUTY_CYCLE) / 100, param ? 0 : 1); } /************************************* * * Phantom II * *************************************/ phantom2_audio_device::phantom2_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, PHANTOM2_AUDIO, tag, owner, clock), m_samples(*this, "samples"), m_exp(*this, "EXPLAMP"), m_p1(0U), m_p2(0U) { } void phantom2_audio_device::p1_w(u8 data) { u8 const rising(data & ~m_p1); m_p1 = data; if (BIT(rising, 0)) m_samples->start(0, 0); // PLAYER SHOT sound // if (data & 0x02) enable ENEMY SHOT sound // previously, code did this - system_mute and system_enable controlled the same thing, so bit 5 was ignored //machine().sound().system_mute(!BIT(data, 5)); //machine().sound().system_enable(BIT(data, 2)); machine().sound().system_mute(!BIT(data, 5) && !BIT(data, 2)); machine().bookkeeping().coin_counter_w(0, BIT(data, 3)); // if (data & 0x10) enable RADAR sound // D5-D7 are not connected } void phantom2_audio_device::p2_w(u8 data) { u8 const rising(data & ~m_p2); m_p2 = data; // D0-D2 are not connected if (BIT(rising, 3)) m_samples->start(1, 1); // enable EXPLOSION sound m_exp = BIT(data, 4); // set JET SOUND FREQ((data >> 5) & 0x07) 0, if no jet sound } void phantom2_audio_device::device_add_mconfig(machine_config &config) { static char const *const sample_names[] = { "*phantom2", "1", // shot "2", // explosion nullptr }; SPEAKER(config, "mono").front_center(); SAMPLES(config, m_samples); m_samples->set_channels(2); m_samples->set_samples_names(sample_names); m_samples->add_route(ALL_OUTPUTS, "mono", 1.0); } void phantom2_audio_device::device_start() { m_exp.resolve(); m_p1 = 0U; m_p2 = 0U; save_item(NAME(m_p1)); save_item(NAME(m_p2)); } /************************************* * * Space Invaders * * Discrete sound emulation: * Apr 2007, D.R. * *************************************/ static discrete_op_amp_1sht_info const invaders_invader_hit_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R49 RES_K(100), // R51 RES_M(1), // R48 RES_M(1), // R50 RES_M(2.2), // R52 CAP_U(0.1), // C18 CAP_P(470), // C20 0, // vN 12 // vP }; static const discrete_op_amp_osc_info invaders_invader_hit_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_M(1), // R37 RES_K(10), // R41 RES_K(100), // R38 RES_K(120), // R40 RES_M(1), // R39 0, // no r6 0, // no r7 0, // no r8 CAP_U(0.1), // C16 12, // vP }; // Schematic M051-00739-A005 and M051-00739-B005 // P.C. A084-90700-B000 and A084-90700-C000 static DISCRETE_SOUND_START(invaders_discrete) INVADERS_NOISE_GENERATOR INVADERS_SAUCER_HIT(1) INVADERS_FLEET(1) INVADERS_BONUS_MISSLE_BASE(1) INVADERS_INVADER_HIT(1, invaders) INVADERS_EXPLOSION(1) INVADERS_MISSILE(1, invaders) INVADERS_MIXER(1, invaders) DISCRETE_SOUND_END invaders_audio_device::invaders_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, INVADERS_AUDIO, tag, owner, clock), m_sn(*this, "snsnd"), m_discrete(*this, "discrete"), m_flip_screen_out(*this), m_p2(0U) { } void invaders_audio_device::p1_w(u8 data) { m_sn->enable_w(BIT(~data, 0)); // saucer sound m_discrete->write(INVADERS_NODE(INVADERS_MISSILE_EN, 1), data & 0x02); m_discrete->write(INVADERS_NODE(INVADERS_EXPLOSION_EN, 1), data & 0x04); m_discrete->write(INVADERS_NODE(INVADERS_INVADER_HIT_EN, 1), data & 0x08); m_discrete->write(INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_EN, 1), data & 0x10); machine().sound().system_mute(!BIT(data, 5)); // D6 and D7 are not connected } void invaders_audio_device::p2_w(u8 data) { u8 const changed(data ^ m_p2); m_p2 = data; m_discrete->write(INVADERS_NODE(INVADERS_FLEET_DATA, 1), data & 0x0f); m_discrete->write(INVADERS_NODE(INVADERS_SAUCER_HIT_EN, 1), data & 0x10); if (BIT(changed, 5)) m_flip_screen_out(BIT(data, 5)); // D6 and D7 are not connected } void invaders_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "mono").front_center(); SN76477(config, m_sn); m_sn->set_noise_params(0, 0, 0); m_sn->set_decay_res(0); m_sn->set_attack_params(0, RES_K(100)); m_sn->set_amp_res(RES_K(56)); m_sn->set_feedback_res(RES_K(10)); m_sn->set_vco_params(0, CAP_U(0.1), RES_K(8.2)); m_sn->set_pitch_voltage(5.0); m_sn->set_slf_params(CAP_U(1.0), RES_K(120)); m_sn->set_oneshot_params(0, 0); m_sn->set_vco_mode(1); m_sn->set_mixer_params(0, 0, 0); m_sn->set_envelope_params(1, 0); m_sn->set_enable(1); m_sn->add_route(ALL_OUTPUTS, "mono", 0.5); DISCRETE(config, m_discrete, invaders_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.5); } void invaders_audio_device::device_start() { m_flip_screen_out.resolve_safe(); m_p2 = 0U; save_item(NAME(m_p2)); } /************************************* * * Space Invaders II (cocktail) * *************************************/ static discrete_op_amp_1sht_info const invad2ct_invader_hit_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R49 RES_K(100), // R51 RES_M(1), // R48 RES_M(1), // R50 RES_M(2.2), // R52 CAP_U(0.22), // C18 CAP_P(470), // C20 0, // vN 12 // vP }; static discrete_op_amp_osc_info const invad2ct_invader_hit_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_M(1), // R37 RES_K(10), // R41 RES_K(100), // R38 RES_K(120), // R40 RES_M(1), // R39 0, // no r6 0, // no r7 0, // no r8 CAP_U(0.22), // C16 12, // vP }; static discrete_op_amp_1sht_info const invad2ct_brd2_invader_hit_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R49 RES_K(100), // R51 RES_M(1), // R48 RES_M(1), // R50 RES_M(2.2), // R52 CAP_U(1), // C18 CAP_P(470), // C20 0, // vN 12 // vP }; static discrete_op_amp_osc_info const invad2ct_brd2_invader_hit_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, RES_M(1), // R37 RES_K(10), // R41 RES_K(100), // R38 RES_K(120), // R40 RES_M(1), // R39 0, // no r6 0, // no r7 0, // no r8 CAP_U(0.1), // C16 12, // vP }; static discrete_op_amp_1sht_info const invad2ct_missle_1sht = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, RES_M(4.7), // R32 RES_K(100), // R30 RES_M(1), // R31 RES_M(1), // R33 RES_M(2.2), // R34 CAP_U(0.22), // C12 CAP_P(470), // C15 0, // vN 12 // vP }; static discrete_mixer_desc const invad2ct_mixer = { DISC_MIXER_IS_OP_AMP, // type { RES_K(100), // R78 RES_K(15) + 100 + 100, // R134 + R133 + R132 RES_K(150), // R136 RES_K(150), // R59 RES_K(10) + RES_K(6.8) + RES_K(5.6), // R86 + R85 + R84 RES_K(150) }, // R28 {0}, // no rNode{} { 0, 0, 0, 0, 0, CAP_U(0.001) }, // C11 0, // no rI RES_K(100), // R105 0, // no cF CAP_U(0.1), // C45 0, // vRef = ground 1 // gain }; static DISCRETE_SOUND_START(invad2ct_discrete) // sound board 1 // P.C. A082-90700-A000 // Schematic M051-00851-A002 INVADERS_NOISE_GENERATOR INVADERS_SAUCER_HIT(1) INVADERS_FLEET(1) INVADERS_BONUS_MISSLE_BASE(1) INVADERS_INVADER_HIT(1, invad2ct) INVADERS_EXPLOSION(1) INVADERS_MISSILE(1, invad2ct) INVADERS_MIXER(1, invad2ct) // sound board 2 // P.C. A084-90901-C851 // Schematic M051-00851-A005 INVADERS_SAUCER_HIT(2) INVADERS_FLEET(2) INVADERS_BONUS_MISSLE_BASE(2) INVADERS_INVADER_HIT(2, invad2ct_brd2) INVADERS_EXPLOSION(2) INVADERS_MISSILE(2, invaders) INVADERS_MIXER(2, invaders) DISCRETE_SOUND_END invad2ct_audio_device::invad2ct_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : device_t(mconfig, INVAD2CT_AUDIO, tag, owner, clock), m_discrete(*this, "discrete"), m_sn(*this, "sn%u", 1U) { } void invad2ct_audio_device::p1_w(u8 data) { m_sn[0]->enable_w(BIT(~data, 0)); // saucer sound m_discrete->write(INVADERS_NODE(INVADERS_MISSILE_EN, 1), data & 0x02); m_discrete->write(INVADERS_NODE(INVADERS_EXPLOSION_EN, 1), data & 0x04); m_discrete->write(INVADERS_NODE(INVADERS_INVADER_HIT_EN, 1), data & 0x08); m_discrete->write(INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_EN, 1), data & 0x10); machine().sound().system_mute(!BIT(data, 5)); // D6 and D7 are not connected } void invad2ct_audio_device::p2_w(u8 data) { m_discrete->write(INVADERS_NODE(INVADERS_FLEET_DATA, 1), data & 0x0f); m_discrete->write(INVADERS_NODE(INVADERS_SAUCER_HIT_EN, 1), data & 0x10); // D5-D7 are not connected } void invad2ct_audio_device::p3_w(u8 data) { m_sn[1]->enable_w(BIT(~data, 0)); // saucer sound m_discrete->write(INVADERS_NODE(INVADERS_MISSILE_EN, 2), data & 0x02); m_discrete->write(INVADERS_NODE(INVADERS_EXPLOSION_EN, 2), data & 0x04); m_discrete->write(INVADERS_NODE(INVADERS_INVADER_HIT_EN, 2), data & 0x08); m_discrete->write(INVADERS_NODE(INVADERS_BONUS_MISSLE_BASE_EN, 2), data & 0x10); // D5-D7 are not connected } void invad2ct_audio_device::p4_w(u8 data) { m_discrete->write(INVADERS_NODE(INVADERS_FLEET_DATA, 2), data & 0x0f); m_discrete->write(INVADERS_NODE(INVADERS_SAUCER_HIT_EN, 2), data & 0x10); // D5-D7 are not connected } void invad2ct_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "spk1").front_left(); SPEAKER(config, "spk2").front_right(); DISCRETE(config, m_discrete, invad2ct_discrete); m_discrete->add_route(0, "spk1", 0.5); m_discrete->add_route(1, "spk2", 0.5); SN76477(config, m_sn[0]); m_sn[0]->set_noise_params(0, 0, 0); m_sn[0]->set_decay_res(0); m_sn[0]->set_attack_params(0, RES_K(100)); m_sn[0]->set_amp_res(RES_K(56)); m_sn[0]->set_feedback_res(RES_K(10)); m_sn[0]->set_vco_params(0, CAP_U(0.1), RES_K(8.2)); m_sn[0]->set_pitch_voltage(5.0); m_sn[0]->set_slf_params(CAP_U(1.0), RES_K(120)); m_sn[0]->set_oneshot_params(0, 0); m_sn[0]->set_vco_mode(1); m_sn[0]->set_mixer_params(0, 0, 0); m_sn[0]->set_envelope_params(1, 0); m_sn[0]->set_enable(1); m_sn[0]->add_route(ALL_OUTPUTS, "spk1", 0.3); SN76477(config, m_sn[1]); m_sn[1]->set_noise_params(0, 0, 0); m_sn[1]->set_decay_res(0); m_sn[1]->set_attack_params(0, RES_K(100)); m_sn[1]->set_amp_res(RES_K(56)); m_sn[1]->set_feedback_res(RES_K(10)); m_sn[1]->set_vco_params(0, CAP_U(0.047), RES_K(39)); m_sn[1]->set_pitch_voltage(5.0); m_sn[1]->set_slf_params(CAP_U(1.0), RES_K(120)); m_sn[1]->set_oneshot_params(0, 0); m_sn[1]->set_vco_mode(1); m_sn[1]->set_mixer_params(0, 0, 0); m_sn[1]->set_envelope_params(1, 0); m_sn[1]->set_enable(1); m_sn[1]->add_route(ALL_OUTPUTS, "spk2", 0.3); } void invad2ct_audio_device::device_start() { } /************************************* * * Tornado Baseball * *************************************/ #define TORNBASE_SQUAREW_240 NODE_01 #define TORNBASE_SQUAREW_960 NODE_02 #define TORNBASE_SQUAREW_120 NODE_03 #define TORNBASE_TONE_240_EN NODE_04 #define TORNBASE_TONE_960_EN NODE_05 #define TORNBASE_TONE_120_EN NODE_06 #define TORNBASE_TONE_240_SND NODE_07 #define TORNBASE_TONE_960_SND NODE_08 #define TORNBASE_TONE_120_SND NODE_09 #define TORNBASE_TONE_SND NODE_10 #define TORNBASE_TONE_SND_FILT NODE_11 static DISCRETE_SOUND_START(tornbase_discrete) /* the 3 enable lines coming out of the 74175 flip-flop at G5 */ DISCRETE_INPUT_LOGIC(TORNBASE_TONE_240_EN) /* pin 2 */ DISCRETE_INPUT_LOGIC(TORNBASE_TONE_960_EN) /* pin 7 */ DISCRETE_INPUT_LOGIC(TORNBASE_TONE_120_EN) /* pin 5 */ /* 3 different freq square waves (240, 960 and 120Hz). Originates from the CPU board via an edge connector. The wave is in the 0/+1 range */ DISCRETE_SQUAREWFIX(TORNBASE_SQUAREW_240, 1, 240, 1.0, 50.0, 1.0/2, 0) /* pin X */ DISCRETE_SQUAREWFIX(TORNBASE_SQUAREW_960, 1, 960, 1.0, 50.0, 1.0/2, 0) /* pin Y */ DISCRETE_SQUAREWFIX(TORNBASE_SQUAREW_120, 1, 120, 1.0, 50.0, 1.0/2, 0) /* pin V */ /* 7403 O/C NAND gate at G6. 3 of the 4 gates used with their outputs tied together */ DISCRETE_LOGIC_NAND(TORNBASE_TONE_240_SND, TORNBASE_SQUAREW_240, TORNBASE_TONE_240_EN) /* pins 4,5,6 */ DISCRETE_LOGIC_NAND(TORNBASE_TONE_960_SND, TORNBASE_SQUAREW_960, TORNBASE_TONE_960_EN) /* pins 2,1,3 */ DISCRETE_LOGIC_NAND(TORNBASE_TONE_120_SND, TORNBASE_SQUAREW_120, TORNBASE_TONE_120_EN) /* pins 13,12,11 */ DISCRETE_LOGIC_AND3(TORNBASE_TONE_SND, TORNBASE_TONE_240_SND, TORNBASE_TONE_960_SND, TORNBASE_TONE_120_SND) /* 47K resistor (R601) and 0.047uF capacitor (C601) There is also a 50K pot acting as a volume control, but we output at the maximum volume as MAME has its own volume adjustment */ DISCRETE_CRFILTER(TORNBASE_TONE_SND_FILT, TORNBASE_TONE_SND, RES_K(47), CAP_U(0.047)) /* amplify for output */ DISCRETE_OUTPUT(TORNBASE_TONE_SND_FILT, 32767) DISCRETE_SOUND_END void mw8080bw_state::tornbase_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, tornbase_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 1); } void mw8080bw_state::tornbase_audio_w(uint8_t data) { m_discrete->write(TORNBASE_TONE_240_EN, (data >> 0) & 0x01); m_discrete->write(TORNBASE_TONE_960_EN, (data >> 1) & 0x01); m_discrete->write(TORNBASE_TONE_120_EN, (data >> 2) & 0x01); /* if (data & 0x08) enable SIREN sound */ /* if (data & 0x10) enable CHEER sound */ if (tornbase_get_cabinet_type() == TORNBASE_CAB_TYPE_UPRIGHT_OLD) { /* if (data & 0x20) enable WHISTLE sound */ /* D6 is not connected on this cabinet type */ } else { /* D5 is not connected on this cabinet type */ /* if (data & 0x40) enable WHISTLE sound */ } machine().bookkeeping().coin_counter_w(0, (data >> 7) & 0x01); } /************************************* * * 280 ZZZAP / Laguna Racer * *************************************/ // Sound board volume potentiometer, set to its midpoint value by default. static INPUT_PORTS_START(zzzap_audio) PORT_START("POT_MASTER_VOL") PORT_ADJUSTER( 50, "Pot: Master Volume" ) NETLIST_ANALOG_PORT_CHANGED("sound_nl", "pot_master_vol") INPUT_PORTS_END zzzap_common_audio_device::zzzap_common_audio_device(machine_config const &mconfig, device_type type, char const *tag, device_t *owner, u32 clock, void (*netlist)(netlist::nlparse_t &)) : device_t(mconfig, type, tag, owner, clock), m_netlist(netlist), m_pedal_bit0(*this, "sound_nl:pedal_bit0"), m_pedal_bit1(*this, "sound_nl:pedal_bit1"), m_pedal_bit2(*this, "sound_nl:pedal_bit2"), m_pedal_bit3(*this, "sound_nl:pedal_bit3"), m_hi_shift(*this, "sound_nl:hi_shift"), m_lo_shift(*this, "sound_nl:lo_shift"), m_boom(*this, "sound_nl:boom"), m_engine_sound_off(*this, "sound_nl:engine_sound_off"), m_noise_cr_1(*this, "sound_nl:noise_cr_1"), m_noise_cr_2(*this, "sound_nl:noise_cr_2") { } void zzzap_common_audio_device::p1_w(u8 data) { // **** Output pins from 74174 latch at F5 **** // Bits 0-3 (PEDAL_BIT0 to PEDAL_BIT3): accelerator pedal position // Sets the frequency and volume of the engine sound oscillators. m_pedal_bit0->write_line(BIT(data, 0)); m_pedal_bit1->write_line(BIT(data, 1)); m_pedal_bit2->write_line(BIT(data, 2)); m_pedal_bit3->write_line(BIT(data, 3)); // Bit 4 (HI SHIFT): set when gearshift is in high gear // Modifies the engine sound to be lower pitched at a given speed and // to change more slowly. m_hi_shift->write_line(BIT(data, 4)); // Bit 5 (LO SHIFT): set when gearshift is in low gear // Modifies the engine sound to be higher pitched at a given speed and // to change faster. m_lo_shift->write_line(BIT(data, 5)); // Bits 6-7 (D6, D7): not connected. } void zzzap_common_audio_device::p2_w(u8 data) { // **** Output pins from 74174 latch at F4 **** // Bit 0 (BOOM): Set to activate boom sound for a crash. Cleared to // terminate boom. m_boom->write_line(BIT(data, 0)); // Bit 1 (ENGINE SOUND OFF): Set to turn *off* engine sound. // Used in a crash or when game is not running. m_engine_sound_off->write_line(BIT(data, 1)); // Bit 2 (NOISE CR 1): tire squealing sound // Set to activate "tire squeal" noise from noise generator. m_noise_cr_1->write_line(BIT(data, 2)); // Bit 3 (NOISE CR 2): post-crash noise // Set to activate screeching noise that follows BOOM (the car blowing // up). This sounds like a generic high-pitched screeching hiss, and // it is unclear what it was meant to represent. It's just as // ambiguous in the real game. m_noise_cr_2->write_line(BIT(data, 3)); // Bit 5 is for the coin counter. machine().bookkeeping().coin_counter_w(0, (data >> 5) & 0x01); // Bits 4, 6-7 (D4, D6, D7): not connected. } void zzzap_common_audio_device::device_add_mconfig(machine_config &config) { SPEAKER(config, "mono").front_center(); if (m_netlist != nullptr) { NETLIST_SOUND(config, "sound_nl", 48000) .set_source(m_netlist) .add_route(ALL_OUTPUTS, "mono", 1.0); NETLIST_LOGIC_INPUT(config, "sound_nl:pedal_bit0", "I_PEDAL_BIT0", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:pedal_bit1", "I_PEDAL_BIT1", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:pedal_bit2", "I_PEDAL_BIT2", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:pedal_bit3", "I_PEDAL_BIT3", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:hi_shift", "I_HI_SHIFT", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:lo_shift", "I_LO_SHIFT", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:boom", "I_BOOM", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:engine_sound_off", "I_ENGINE_SOUND_OFF", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:noise_cr_1", "I_NOISE_CR_1", 0); NETLIST_LOGIC_INPUT(config, "sound_nl:noise_cr_2", "I_NOISE_CR_2", 0); // The audio output is taken from an LM3900 op-amp whose // output has a peak-to-peak range of about 5 volts, centered // on 2.5 volts. With the master volume potentiometer at its // default midpoint setting, this range is cut in half, to 2.5 // volts peak to peak. In the real machine, the audio power // amps might clip the highest output peaks, but I don't model // this. Instead, I take the easy way out: assume the output // at midpoint volume will just avoid clipping the extreme // peaks, and scale and offset it so that those peaks will // just reach the clipping limits for signed 16-bit samples. // So turning the volume up much higher than the default will // give clipped output. NETLIST_STREAM_OUTPUT(config, "sound_nl:cout0", 0, "OUTPUT").set_mult_offset(1.0 / 1.25, -(1.0 / 1.25) * 2.50); // Netlist volume-potentiometer interface NETLIST_ANALOG_INPUT(config, "sound_nl:pot_master_vol", "R70.DIAL"); } } ioport_constructor zzzap_common_audio_device::device_input_ports() const { return INPUT_PORTS_NAME(zzzap_audio); } void zzzap_common_audio_device::device_start() { } zzzap_audio_device::zzzap_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : zzzap_common_audio_device(mconfig, ZZZAP_AUDIO, tag, owner, clock, NETLIST_NAME(280zzzap)) { } lagunar_audio_device::lagunar_audio_device(machine_config const &mconfig, char const *tag, device_t *owner, u32 clock) : zzzap_common_audio_device(mconfig, LAGUNAR_AUDIO, tag, owner, clock, NETLIST_NAME(lagunar)) { } /************************************* * * Amazing Maze * * Discrete sound emulation: Feb 2007, D.R. * *************************************/ /* nodes - inputs */ #define MAZE_P1_DATA NODE_01 #define MAZE_P2_DATA NODE_02 #define MAZE_TONE_TIMING NODE_03 #define MAZE_COIN NODE_04 /* nodes - other */ #define MAZE_JOYSTICK_IN_USE NODE_11 #define MAZE_AUDIO_ENABLE NODE_12 #define MAZE_TONE_ENABLE NODE_13 #define MAZE_GAME_OVER NODE_14 #define MAZE_R305_306_308 NODE_15 #define MAZE_R303_309 NODE_16 #define MAZE_PLAYER_SEL NODE_17 /* nodes - sounds */ #define MAZE_SND NODE_18 static const discrete_555_desc maze_555_F2 = { DISC_555_OUT_SQW | DISC_555_OUT_DC | DISC_555_TRIGGER_IS_LOGIC | DISC_555_TRIGGER_DISCHARGES_CAP, 5, /* B+ voltage of 555 */ DEFAULT_555_VALUES }; static const double maze_74147_table[] = { 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 2, 3 }; static const discrete_comp_adder_table maze_r305_306_308 = { DISC_COMP_P_RESISTOR, /* type of circuit */ RES_K(100), /* R308 */ 2, /* length */ { RES_M(1.5), /* R304 */ RES_K(820) } /* R304 */ }; static const discrete_comp_adder_table maze_r303_309 = { DISC_COMP_P_RESISTOR, /* type of circuit */ RES_K(330), /* R309 */ 1, /* length */ { RES_M(1) } /* R303 */ }; static const discrete_op_amp_osc_info maze_op_amp_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, /* type */ RES_M(1), /* R306 */ RES_K(430), /* R307 */ MAZE_R305_306_308, /* R304, R305, R308 switchable circuit */ MAZE_R303_309, /* R303, R309 switchable circuit */ RES_K(330), /* R310 */ 0, 0, 0, /* not used */ CAP_P(3300), /* C300 */ 5 /* vP */ }; static DISCRETE_SOUND_START(maze_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_DATA (MAZE_P1_DATA) DISCRETE_INPUT_DATA (MAZE_P2_DATA) DISCRETE_INPUT_LOGIC(MAZE_TONE_TIMING) DISCRETE_INPUT_LOGIC(MAZE_COIN) DISCRETE_INPUT_LOGIC(MAZE_JOYSTICK_IN_USE) /* IC D2, pin 8 */ /* The following circuits control when audio is heard. */ /* Basically there is sound for 30s after a coin is inserted. */ /* This time is extended whenever a control is pressed. */ /* After the 30s has expired, there is no sound until the next coin is inserted. */ /* There is also sound for the first 30s after power up even without a coin. */ DISCRETE_LOGIC_INVERT(NODE_20, /* IC E2, pin 8 */ MAZE_JOYSTICK_IN_USE) /* IN0 */ DISCRETE_555_MSTABLE(MAZE_GAME_OVER, /* IC F2, pin 3 */ 1, /* RESET */ NODE_20, /* TRIG */ RES_K(270), /* R203 */ CAP_U(100), /* C204 */ &maze_555_F2) DISCRETE_LOGIC_JKFLIPFLOP(MAZE_AUDIO_ENABLE,/* IC F1, pin 5 */ MAZE_COIN, /* RESET */ 1, /* SET */ MAZE_GAME_OVER, /* CLK */ 1, /* J */ 0) /* K */ DISCRETE_LOGIC_INVERT(MAZE_TONE_ENABLE, /* IC F1, pin 6 */ MAZE_AUDIO_ENABLE) /* IN0 */ DISCRETE_LOGIC_AND3(NODE_21, MAZE_JOYSTICK_IN_USE, /* INP0 */ MAZE_TONE_ENABLE, /* INP1 */ MAZE_TONE_TIMING) /* INP2 */ /* The following circuits use the control info to generate a tone. */ DISCRETE_LOGIC_JKFLIPFLOP(MAZE_PLAYER_SEL, /* IC C1, pin 3 */ 1, /* RESET */ 1, /* SET */ MAZE_TONE_TIMING, /* CLK */ 1, /* J */ 1) /* K */ DISCRETE_MULTIPLEX2(NODE_31, /* IC D1 */ MAZE_PLAYER_SEL, /* ADDR */ MAZE_P1_DATA, /* INP0 */ MAZE_P2_DATA) /* INP1 */ DISCRETE_LOOKUP_TABLE(NODE_32, /* IC E1 */ NODE_31, /* ADDR */ 16, /* SIZE */ &maze_74147_table) DISCRETE_COMP_ADDER(MAZE_R305_306_308, /* value of selected parallel circuit R305, R306, R308 */ NODE_32, /* DATA */ &maze_r305_306_308) DISCRETE_COMP_ADDER(MAZE_R303_309, /* value of selected parallel circuit R303, R309 */ MAZE_PLAYER_SEL, /* DATA */ &maze_r303_309) DISCRETE_OP_AMP_OSCILLATOR(NODE_36, /* IC J1, pin 4 */ 1, /* ENAB */ &maze_op_amp_osc) /* The following circuits remove DC poping noises when the tone is switched in/out. */ DISCRETE_CRFILTER_VREF(NODE_40, NODE_36, /* IN0 */ RES_K(250), /* R311, R312, R402, R403 in parallel */ CAP_U(0.1), /* c301 */ 2.5) /* center voltage of R311, R312 */ DISCRETE_SWITCH(NODE_41, /* IC H3, pin 10 */ 1, /* ENAB */ NODE_21, /* switch */ 2.5, /* INP0 - center voltage of R402, R403 */ NODE_40) /* INP1 */ DISCRETE_CRFILTER(NODE_42, NODE_41, /* IN0 */ RES_K(56 + 390), /* R404 + R405 */ CAP_P(0.01) ) /* C401 */ DISCRETE_RCFILTER(NODE_43, NODE_42, /* IN0 */ RES_K(56), /* R404 */ CAP_P(4700) ) /* C400 */ DISCRETE_SWITCH(MAZE_SND, /* H3 saturates op-amp J3 when enabled, disabling audio */ 1, /* ENAB */ MAZE_AUDIO_ENABLE, /* SWITCH */ NODE_43, /* INP0 */ 0) /* INP1 */ DISCRETE_OUTPUT(MAZE_SND, 96200) DISCRETE_SOUND_END void mw8080bw_state::maze_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, maze_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 1.0); } void mw8080bw_state::maze_write_discrete(uint8_t maze_tone_timing_state) { /* controls need to be active low */ int controls = ~ioport("IN0")->read() & 0xff; m_discrete->write(MAZE_TONE_TIMING, maze_tone_timing_state); m_discrete->write(MAZE_P1_DATA, controls & 0x0f); m_discrete->write(MAZE_P2_DATA, (controls >> 4) & 0x0f); m_discrete->write(MAZE_JOYSTICK_IN_USE, controls != 0xff); /* The coin line is connected directly to the discrete circuit. */ /* We can't really do that, so updating it with the tone timing is close enough. */ /* A better option might be to update it at vblank or set a timer to do it. */ /* The only noticeable difference doing it here, is that the controls don't */ /* immediately start making tones if pressed right after the coin is inserted. */ m_discrete->write(MAZE_COIN, (~ioport("IN1")->read() >> 3) & 0x01); } /************************************* * * Checkmate * *************************************/ /* nodes - inputs */ #define CHECKMAT_BOOM_EN NODE_01 #define CHECKMAT_TONE_EN NODE_02 #define CHECKMAT_TONE_DATA_45 NODE_03 #define CHECKMAT_TONE_DATA_67 NODE_04 /* nodes - other */ #define CHECKMAT_R401_402_400 NODE_06 #define CHECKMAT_R407_406_410 NODE_07 /* nodes - sounds */ #define CHECKMAT_BOOM_SND NODE_10 #define CHECKMAT_TONE_SND NODE_11 #define CHECKMAT_FINAL_SND NODE_12 /* nodes - adjusters */ #define CHECKMAT_R309 NODE_15 #define CHECKMAT_R411 NODE_16 static const discrete_comp_adder_table checkmat_r401_402_400 = { DISC_COMP_P_RESISTOR, /* type of circuit */ RES_K(100), /* R401 */ 2, /* length */ { RES_M(1.5), /* R402 */ RES_K(820) } /* R400 */ }; static const discrete_comp_adder_table checkmat_r407_406_410 = { DISC_COMP_P_RESISTOR, /* type of circuit */ RES_K(330), /* R407 */ 2, /* length */ { RES_M(1), /* R406 */ RES_K(510) } /* R410 */ }; static const discrete_op_amp_osc_info checkmat_op_amp_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, /* type */ RES_M(1), /* R403 */ RES_K(430), /* R405 */ CHECKMAT_R401_402_400, /* R401, R402, R400 switchable circuit */ CHECKMAT_R407_406_410, /* R407, R406, R410 switchable circuit */ RES_K(330), /* R404 */ 0, 0, 0, /* not used */ CAP_P(3300), /* C400 */ 5 /* vP */ }; static const discrete_op_amp_tvca_info checkmat_op_amp_tvca = { RES_M(1.2), /* R302 */ RES_M(1), /* R305 */ 0, /* r3 - not used */ RES_M(1.2), /* R304 */ RES_K(1), /* M4 */ 0, /* r6 - not used */ RES_M(1), /* R303 */ 0, /* r8 - not used */ 0, /* r9 - not used */ 0, /* r10 - not used */ 0, /* r11 - not used */ CAP_U(1), /* C300 */ 0, /* c2 - not used */ 0, 0, /* c3, c4 - not used */ 5, /* v1 */ 0, /* v2 */ 0, /* v3 */ 5, /* vP */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* f0 - not used */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* f1 - not used */ DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, /* f2 */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* f3 - not used */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* f4 - not used */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* f5 - not used */ }; static const discrete_mixer_desc checkmat_mixer = { DISC_MIXER_IS_OP_AMP, /* type */ { RES_K(100), /* R308 - VERIFY - can't read schematic */ RES_K(56 + 47) }, /* R412 + R408 */ { CHECKMAT_R309, /* R309 */ CHECKMAT_R411}, /* R411 */ { CAP_U(10), /* C305 */ CAP_U(0.01) }, /* C401 */ 0, /* rI - not used */ RES_K(100), /* R507 */ 0, /* cF - not used */ CAP_U(1), /* C505 */ 0, /* vRef - GND */ 1 /* gain */ }; static DISCRETE_SOUND_START(checkmat_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(CHECKMAT_BOOM_EN) DISCRETE_INPUT_LOGIC(CHECKMAT_TONE_EN) DISCRETE_INPUT_DATA (CHECKMAT_TONE_DATA_45) DISCRETE_INPUT_DATA (CHECKMAT_TONE_DATA_67) /* The low value of the resistors are tweaked to give a good volume range. */ /* This is needed because the original controls are infinite, but the UI only gives 100 steps. */ /* Also real variable resistors never hit 0 ohms. There is always some resistance. */ /* R309 mostly just increases the Boom clipping, making it sound bassier. */ DISCRETE_ADJUSTMENT(CHECKMAT_R309, RES_K(100), 1000, DISC_LOGADJ, "R309") DISCRETE_ADJUSTMENT(CHECKMAT_R411, RES_M(1), 1000, DISC_LOGADJ, "R411") /************************************************ * Boom Sound * * The zener diode noise source is hard to * emulate. Guess for now. ************************************************/ /* FIX - find noise freq and amplitude */ DISCRETE_NOISE(NODE_20, 1, /* ENAB */ 1500, /* FREQ */ 2, /* AMP */ 0) /* BIAS */ DISCRETE_OP_AMP_TRIG_VCA(NODE_21, CHECKMAT_BOOM_EN, /* TRG0 */ 0, /* TRG1 - not used */ 0, /* TRG2 - not used */ NODE_20, /* IN0 */ 0, /* IN1 - not used */ &checkmat_op_amp_tvca) /* The next 5 modules emulate the filter. */ DISCRETE_FILTER2(NODE_23, 1, /* ENAB */ NODE_21, /* INP0 */ 35, /* FREQ */ 1.0 / 8, /* DAMP */ DISC_FILTER_BANDPASS) DISCRETE_GAIN(NODE_24, NODE_23, /* IN0 */ 15) /* GAIN */ DISCRETE_CLAMP(CHECKMAT_BOOM_SND, /* IC Q2/3, pin 10 */ NODE_24, /* IN0 */ 0 - 6, /* MIN */ 12.0 - OP_AMP_NORTON_VBE -6)/* MAX */ /************************************************ * Tone generator ************************************************/ DISCRETE_COMP_ADDER(CHECKMAT_R401_402_400, /* value of selected parallel circuit R401, R402, R400 */ CHECKMAT_TONE_DATA_45, /* DATA */ &checkmat_r401_402_400) DISCRETE_COMP_ADDER(CHECKMAT_R407_406_410, /* value of selected parallel circuit R407, R406, R410 */ CHECKMAT_TONE_DATA_67, /* DATA */ &checkmat_r407_406_410) DISCRETE_OP_AMP_OSCILLATOR(NODE_30, /* IC N3/4, pin 4 */ 1, /* ENAB */ &checkmat_op_amp_osc) /* The following circuits remove DC poping noises when the tone is switched in/out. */ DISCRETE_CRFILTER_VREF(NODE_31, NODE_30, /* IN0 */ RES_K(250), /* R409, R415, R414, R413 in parallel */ CAP_U(0.1), /* c401 */ 2.5) /* center voltage of R409, R415 */ DISCRETE_SWITCH(NODE_32, /* IC R3/4, pin 9 */ 1, /* ENAB */ CHECKMAT_TONE_EN, /* switch */ 2.5, /* INP0 - center voltage of R413, R414 */ NODE_31) /* INP1 */ DISCRETE_CRFILTER(NODE_33, NODE_32, /* IN0 */ RES_K(56 + 47 + 200), /* R412 + R408 + part of R411 */ CAP_P(0.01) ) /* C404 */ DISCRETE_RCFILTER(CHECKMAT_TONE_SND, NODE_33, /* IN0 */ RES_K(56), /* R412 */ CAP_P(4700) ) /* C403 */ /************************************************ * Final mix and output ************************************************/ DISCRETE_MIXER2(CHECKMAT_FINAL_SND, 1, /* ENAB */ CHECKMAT_BOOM_SND, /* IN0 */ CHECKMAT_TONE_SND, /* IN1 */ &checkmat_mixer) DISCRETE_OUTPUT(CHECKMAT_FINAL_SND, 300000) DISCRETE_SOUND_END void mw8080bw_state::checkmat_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, checkmat_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.4); } void mw8080bw_state::checkmat_audio_w(uint8_t data) { m_discrete->write(CHECKMAT_TONE_EN, data & 0x01); m_discrete->write(CHECKMAT_BOOM_EN, (data >> 1) & 0x01); machine().bookkeeping().coin_counter_w(0, (data >> 2) & 0x01); machine().sound().system_mute(!BIT(data, 3)); m_discrete->write(CHECKMAT_TONE_DATA_45, (data >> 4) & 0x03); m_discrete->write(CHECKMAT_TONE_DATA_67, (data >> 6) & 0x03); } /************************************* * * Shuffleboard * * Discrete sound emulation: Oct 2009, D.R. * *************************************/ /* Discrete Sound Input Nodes */ #define SHUFFLE_ROLLING_1_EN NODE_01 #define SHUFFLE_ROLLING_2_EN NODE_02 #define SHUFFLE_ROLLING_3_EN NODE_03 #define SHUFFLE_FOUL_EN NODE_04 #define SHUFFLE_ROLLOVER_EN NODE_05 #define SHUFFLE_CLICK_EN NODE_06 /* Discrete Sound Output Nodes */ #define SHUFFLE_NOISE NODE_10 #define SHUFFLE_ROLLING_SND NODE_11 #define SHUFFLE_FOUL_SND NODE_12 #define SHUFFLE_ROLLOVER_SND NODE_13 #define SHUFFLE_CLICK_SND NODE_14 /* Parts List - Resistors */ #define SHUFFLE_R300 RES_K(33) #define SHUFFLE_R400 RES_K(200) #define SHUFFLE_R401 RES_K(3) #define SHUFFLE_R402 RES_K(5.6) #define SHUFFLE_R403 RES_K(5.6) #define SHUFFLE_R404 RES_M(1) #define SHUFFLE_R406 RES_K(300) #define SHUFFLE_R407 RES_K(680) #define SHUFFLE_R408 RES_K(680) #define SHUFFLE_R409 RES_K(680) #define SHUFFLE_R410 RES_K(680) #define SHUFFLE_R411 RES_K(680) #define SHUFFLE_R412 RES_M(2.7) #define SHUFFLE_R500 RES_K(300) #define SHUFFLE_R503 RES_M(2.7) #define SHUFFLE_R504 RES_K(680) #define SHUFFLE_R505 RES_K(680) #define SHUFFLE_R506 RES_K(100) #define SHUFFLE_R507 RES_K(47) #define SHUFFLE_R508 RES_K(47) #define SHUFFLE_R509 RES_K(100) #define SHUFFLE_R511 RES_M(2) #define SHUFFLE_R512 RES_M(5.6) #define SHUFFLE_R513 RES_K(680) #define SHUFFLE_R514 RES_M(1.5) #define SHUFFLE_R515 RES_M(1) #define SHUFFLE_R516 RES_K(510) /* Parts List - Capacitors */ #define SHUFFLE_C300 CAP_U(0.1) #define SHUFFLE_C400 CAP_U(0.1) #define SHUFFLE_C401 CAP_U(1) #define SHUFFLE_C402 CAP_U(1) #define SHUFFLE_C403 CAP_U(1) #define SHUFFLE_C404 CAP_U(0.1) #define SHUFFLE_C405 CAP_U(0.1) #define SHUFFLE_C500 CAP_U(0.1) #define SHUFFLE_C503 CAP_U(0.0022) #define SHUFFLE_C504 CAP_U(0.0022) #define SHUFFLE_C505 CAP_U(0.33) #define SHUFFLE_C506 CAP_U(1) #define SHUFFLE_C507 CAP_U(1) #define SHUFFLE_C508 CAP_U(1) static const discrete_op_amp_tvca_info shuffle_rolling_tvca = { SHUFFLE_R512, 0, 0, SHUFFLE_R511, /* r1, r2, r3, r4 */ RES_K(10), 0, SHUFFLE_R516, /* r5, r6, r7 */ RES_K(10), SHUFFLE_R515, /* r8, r9 */ RES_K(10), SHUFFLE_R514, /* r10, r11 */ SHUFFLE_C508, SHUFFLE_C507, SHUFFLE_C506, SHUFFLE_C505, /* c1, c2, c3, c4 */ 12, 12, 12, 12, /* v1, v2, v3, vP */ 0, 0, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, 0, /* f0, f1, f2, f3 */ DISC_OP_AMP_TRIGGER_FUNCTION_TRG1, /* f4 */ DISC_OP_AMP_TRIGGER_FUNCTION_TRG2 /* f5 */ }; static const discrete_op_amp_info shuffle_rolling_amp = { DISC_OP_AMP_IS_NORTON, SHUFFLE_R513, SHUFFLE_R505, SHUFFLE_R503, SHUFFLE_R504, /* r1, r2, r3, r4 */ 0, /* c */ 0, 12, /* vN, vP */ }; static const discrete_op_amp_tvca_info shuffle_foul_tvca = { SHUFFLE_R412, SHUFFLE_R411, 0, SHUFFLE_R408, /* r1, r2, r3, r4 */ RES_K(1), 0, SHUFFLE_R406, /* r5, r6, r7 */ 0, 0, 0, 0, /* r8, r9, r10, r11 */ SHUFFLE_C404, 0, 0, 0, /* c1, c2, c3, c4 */ 5, 0, 0, 12, /* v1, v2, v3, vP */ 0, 0, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, 0, 0, 0 /* f0, f1, f2, f3, f4, f5 */ }; static const discrete_op_amp_tvca_info shuffle_rollover_tvca = { SHUFFLE_R404, SHUFFLE_R410, 0, SHUFFLE_R407, /* r1, r2, r3, r4 */ RES_K(10), 0, SHUFFLE_R409, /* r5, r6, r7 */ 0, 0, 0, 0, /* r8, r9, r10, r11 */ SHUFFLE_C405, 0, 0, 0, /* c1, c2, c3, c4 */ 12, 0, 0, 12, /* v1, v2, v3, vP */ 0, 0, DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, 0, 0, 0 /* f0, f1, f2, f3, f4, f5 */ }; static const discrete_mixer_desc shuffle_mixer = { DISC_MIXER_IS_RESISTOR, {SHUFFLE_R500, SHUFFLE_R400, SHUFFLE_R403 + SHUFFLE_R402 + SHUFFLE_R401, SHUFFLE_R300}, {0}, /* r_nodes */ {SHUFFLE_C500, SHUFFLE_C400, SHUFFLE_C401, SHUFFLE_C300}, 0, 0, 0, 0, 0 ,1 /* rI, rF, cF, cAmp, vRef, gain */ }; static DISCRETE_SOUND_START(shuffle_discrete) DISCRETE_INPUT_LOGIC(SHUFFLE_ROLLING_1_EN) DISCRETE_INPUT_LOGIC(SHUFFLE_ROLLING_2_EN) DISCRETE_INPUT_LOGIC(SHUFFLE_ROLLING_3_EN) DISCRETE_INPUT_LOGIC(SHUFFLE_FOUL_EN) DISCRETE_INPUT_LOGIC(SHUFFLE_ROLLOVER_EN) DISCRETE_INPUTX_LOGIC(SHUFFLE_CLICK_EN, 11.5, 0, 0) /* Noise clock was breadboarded and measured at 1210Hz */ DISCRETE_LFSR_NOISE(SHUFFLE_NOISE, /* IC N5, pin 10 */ 1, 1, /* ENAB, RESET */ 1210, 12.0, 0, 12.0 / 2, &midway_lfsr) /* CLK,AMPL,FEED,BIAS,LFSRTB */ /************************************************ * Shuffle rolling ************************************************/ DISCRETE_OP_AMP_TRIG_VCA(NODE_20, /* IC P3-4, pin 5 */ SHUFFLE_ROLLING_1_EN, SHUFFLE_ROLLING_2_EN, SHUFFLE_ROLLING_3_EN, /* TRG0,TRG1,TRG2 */ 0, 0, /*IN0,IN1 */ &shuffle_rolling_tvca) DISCRETE_OP_AMP(NODE_21, /* IC P3-4, pin 4 */ 1, /* ENAB */ SHUFFLE_NOISE, NODE_20, /* IN0,IN1 */ &shuffle_rolling_amp) /* filter not accurate */ DISCRETE_FILTER1(NODE_22, 1, NODE_21, 800, DISC_FILTER_LOWPASS) DISCRETE_GAIN(SHUFFLE_ROLLING_SND, NODE_22, .2) /************************************************ * Foul ************************************************/ DISCRETE_SQUAREWFIX(NODE_30, /* Connected to edge connector V - 120Hz */ 1, 120, DEFAULT_TTL_V_LOGIC_1, 50, DEFAULT_TTL_V_LOGIC_1 / 2, 0) /* ENAB,FREQ,AMP,DUTY,BIAS,PHASE */ DISCRETE_OP_AMP_TRIG_VCA(SHUFFLE_FOUL_SND, /* IC M3-4, pin 5 */ SHUFFLE_FOUL_EN, 0, 0, /* TRG0,TRG1,TRG2 */ NODE_30, 0, /*IN0,IN1 */ &shuffle_foul_tvca) /************************************************ * Shuffle rollover ************************************************/ DISCRETE_OP_AMP_TRIG_VCA(NODE_40, /* IC M3-4, pin 4 */ SHUFFLE_ROLLOVER_EN, 0, 0, /* TRG0,TRG1,TRG2 */ SHUFFLE_NOISE, 0, /*IN0,IN1 */ &shuffle_rollover_tvca) DISCRETE_RCFILTER(NODE_41, NODE_40, /* IN0 */ SHUFFLE_R403, SHUFFLE_C403) DISCRETE_RCFILTER(SHUFFLE_ROLLOVER_SND, NODE_41, /* IN0 */ SHUFFLE_R403 + SHUFFLE_R402, SHUFFLE_C402) /************************************************ * Click ************************************************/ /* filter not accurate */ DISCRETE_FILTER1(NODE_50, 1, SHUFFLE_CLICK_EN, 300, DISC_FILTER_LOWPASS) DISCRETE_GAIN(SHUFFLE_CLICK_SND, NODE_50, .3) /************************************************ * Combine all sound sources. ************************************************/ DISCRETE_MIXER4(NODE_90, 1, /* ENAB */ SHUFFLE_ROLLING_SND, SHUFFLE_FOUL_SND, SHUFFLE_ROLLOVER_SND, SHUFFLE_CLICK_SND, &shuffle_mixer) DISCRETE_OUTPUT(NODE_90, 59200) DISCRETE_SOUND_END void mw8080bw_state::shuffle_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, shuffle_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 1.0); } void mw8080bw_state::shuffle_audio_1_w(uint8_t data) { m_discrete->write(SHUFFLE_CLICK_EN, (data >> 0) & 0x01); m_discrete->write(SHUFFLE_ROLLOVER_EN, (data >> 1) & 0x01); machine().sound().system_mute(!BIT(data, 2)); m_discrete->write(NODE_29, (data >> 3) & 0x07); m_discrete->write(SHUFFLE_ROLLING_3_EN, (data >> 3) & 0x01); m_discrete->write(SHUFFLE_ROLLING_2_EN, (data >> 4) & 0x01); m_discrete->write(SHUFFLE_ROLLING_1_EN, (data >> 5) & 0x01); /* D6 and D7 are not connected */ } void mw8080bw_state::shuffle_audio_2_w(uint8_t data) { m_discrete->write(SHUFFLE_FOUL_EN, (data >> 0) & 0x01); machine().bookkeeping().coin_counter_w(0, (data >> 1) & 0x01); /* D2-D7 are not connected */ } /************************************* * * Bowling Alley * * Discrete sound emulation: * Apr 2007, D.R. * *************************************/ /* nodes - inputs */ #define BOWLER_FOWL_EN NODE_01 /* nodes - sounds */ #define BOWLER_FOWL_SND NODE_10 static const discrete_op_amp_tvca_info bowler_fowl_tvca = { RES_M(2.7), /* R1103 */ RES_K(680), /* R1102 */ 0, /* no r3 */ RES_K(680), /* R1104 */ RES_K(1), /* SIP */ 0, /* no r6 */ RES_K(300), /* R1101 */ 0, /* no r8 */ 0, /* no r9 */ 0, /* no r10 */ 0, /* no r11 */ CAP_U(0.1), /* C1050 */ 0, /* no c2 */ 0, 0, /* no c3, c4 */ 5, /* v1 */ 0, /* no v2 */ 0, /* no v3 */ 12, /* vP */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* no f0 */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* no f1 */ DISC_OP_AMP_TRIGGER_FUNCTION_TRG0, /* f2 */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* no f3 */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE, /* no f4 */ DISC_OP_AMP_TRIGGER_FUNCTION_NONE /* no f5 */ }; static DISCRETE_SOUND_START(bowler_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUT_LOGIC(BOWLER_FOWL_EN) /************************************************ * Explosion ************************************************/ DISCRETE_SQUAREWFIX(NODE_20, 1, /* ENAB */ 180, /* FREQ */ DEFAULT_TTL_V_LOGIC_1, /* p-p AMP */ 50, /* DUTY */ DEFAULT_TTL_V_LOGIC_1 / 2, /* dc BIAS */ 0) /* PHASE */ DISCRETE_OP_AMP_TRIG_VCA(NODE_21, /* IC P3, pin 9 */ BOWLER_FOWL_EN, /* TRG0 */ 0, /* no TRG1 */ 0, /* no TRG2 */ NODE_20, /* IN0 */ 0, /* no IN1 */ &bowler_fowl_tvca) DISCRETE_CRFILTER(BOWLER_FOWL_SND, NODE_21, /* IN0 */ RES_K(68), /* R1120 */ CAP_U(0.1) ) /* C1048 */ DISCRETE_OUTPUT(BOWLER_FOWL_SND, 10000) DISCRETE_SOUND_END void mw8080bw_state::bowler_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, bowler_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 1); } void mw8080bw_state::bowler_audio_1_w(uint8_t data) { /* D0 - selects controller on the cocktail PCB */ machine().bookkeeping().coin_counter_w(0, (data >> 1) & 0x01); machine().sound().system_mute(!BIT(data, 2)); m_discrete->write(BOWLER_FOWL_EN, (data >> 3) & 0x01); /* D4 - appears to be a screen flip, but it's shown unconnected on the schematics for both the upright and cocktail PCB's */ /* D5 - triggered on a 'strike', sound circuit not labeled */ /* D6 and D7 are not connected */ } void mw8080bw_state::bowler_audio_2_w(uint8_t data) { /* set BALL ROLLING SOUND FREQ(data & 0x0f) 0, if no rolling, 0x08 used during ball return */ /* D4 - triggered when the ball crosses the foul line, sound circuit not labeled */ /* D5 - triggered on a 'spare', sound circuit not labeled */ /* D6 and D7 are not connected */ } void mw8080bw_state::bowler_audio_3_w(uint8_t data) { /* regardless of the data, enable BALL HITS PIN 1 sound (top circuit on the schematics) */ } void mw8080bw_state::bowler_audio_4_w(uint8_t data) { /* regardless of the data, enable BALL HITS PIN 2 sound (bottom circuit on the schematics) */ } void mw8080bw_state::bowler_audio_5_w(uint8_t data) { /* not sure, appears to me triggered alongside the two BALL HITS PIN sounds */ } void mw8080bw_state::bowler_audio_6_w(uint8_t data) { /* D0 is not connected */ /* D3 is not connected */ /* D6 and D7 are not connected */ /* D1, D2, D4 and D5 have something to do with a chime circuit. D1 and D4 are HI when a 'strike' happens, and D2 and D5 are HI on a 'spare' */ } /************************************* * * Blue Shark * * Discrete sound emulation: * Jan 2007, D.R. * Oct 2009, D.R. * *************************************/ /* nodes - inputs */ #define BLUESHRK_OCTOPUS_EN NODE_01 #define BLUESHRK_HIT_EN NODE_02 #define BLUESHRK_SHARK_EN NODE_03 #define BLUESHRK_SHOT_EN NODE_04 #define BLUESHRK_GAME_ON_EN NODE_05 /* nodes - sounds */ #define BLUESHRK_NOISE_1 NODE_11 #define BLUESHRK_NOISE_2 NODE_12 #define BLUESHRK_OCTOPUS_SND NODE_13 #define BLUESHRK_HIT_SND NODE_14 #define BLUESHRK_SHARK_SND NODE_15 #define BLUESHRK_SHOT_SND NODE_16 /* Parts List - Resistors */ #define BLUESHRK_R300 RES_M(1) #define BLUESHRK_R301 RES_K(100) #define BLUESHRK_R302 RES_M(1) #define BLUESHRK_R303 RES_K(33) #define BLUESHRK_R304 RES_K(120) #define BLUESHRK_R305 RES_M(1) #define BLUESHRK_R306 RES_K(470) #define BLUESHRK_R307 RES_K(680) #define BLUESHRK_R308 RES_M(1) #define BLUESHRK_R309 RES_M(1) #define BLUESHRK_R310 RES_K(680) #define BLUESHRK_R311 RES_K(1) #define BLUESHRK_R312 RES_K(100) #define BLUESHRK_R313 RES_M(1) #define BLUESHRK_R314 RES_M(1) #define BLUESHRK_R315 RES_M(4.7) #define BLUESHRK_R316 RES_M(2.2) #define BLUESHRK_R317 RES_K(10) #define BLUESHRK_R318 RES_M(1) #define BLUESHRK_R319 RES_K(680) #define BLUESHRK_R320 RES_M(2.7) #define BLUESHRK_R321 RES_K(680) #define BLUESHRK_R324 RES_K(750) #define BLUESHRK_R520 RES_K(510) #define BLUESHRK_R521 RES_K(22) #define BLUESHRK_R529 RES_K(33) #define BLUESHRK_R601 RES_K(47) #define BLUESHRK_R602 RES_K(22) #define BLUESHRK_R603 RES_K(39) #define BLUESHRK_R604 RES_K(1) #define BLUESHRK_R605 RES_M(1) #define BLUESHRK_R700 RES_K(68) #define BLUESHRK_R701 RES_K(470) #define BLUESHRK_R702 RES_M(1.2) #define BLUESHRK_R703 RES_M(1.5) #define BLUESHRK_R704 RES_K(22) #define BLUESHRK_R705 RES_K(100) #define BLUESHRK_R706 RES_K(470) #define BLUESHRK_R707 RES_M(1.2) #define BLUESHRK_R708 RES_M(1.5) #define BLUESHRK_R709 RES_K(22) #define BLUESHRK_R710 RES_K(470) #define BLUESHRK_R711 RES_K(39) #define BLUESHRK_R712 RES_M(1.2) #define BLUESHRK_R713 RES_M(1.5) #define BLUESHRK_R714 RES_K(22) #define BLUESHRK_R715 RES_K(47) #define BLUESHRK_R716 RES_K(75) #define BLUESHRK_R717 RES_M(1.5) #define BLUESHRK_R718 RES_M(2.2) #define BLUESHRK_R719 RES_K(560) #define BLUESHRK_R720 RES_M(1.5) #define BLUESHRK_R721 RES_M(2.2) #define BLUESHRK_R722 RES_M(2.2) #define BLUESHRK_R723 RES_K(560) #define BLUESHRK_R724 RES_K(12) #define BLUESHRK_R725 RES_K(68) #define BLUESHRK_R726 RES_K(330) #define BLUESHRK_R727 RES_M(2.2) #define BLUESHRK_R728 RES_M(1) #define BLUESHRK_R730 RES_K(56) #define BLUESHRK_R1000 RES_K(1) /* Parts List - Capacitors */ #define BLUESHRK_C300 CAP_U(0.1) #define BLUESHRK_C301 CAP_P(470) #define BLUESHRK_C302 CAP_P(470) #define BLUESHRK_C303 CAP_U(0.47) #define BLUESHRK_C304 CAP_U(1) #define BLUESHRK_C305 CAP_U(1) #define BLUESHRK_C508 CAP_U(1) #define BLUESHRK_C600 CAP_U(2.2) #define BLUESHRK_C602 CAP_U(0.022) #define BLUESHRK_C603 CAP_U(0.01) #define BLUESHRK_C604 CAP_U(0.015) #define BLUESHRK_C606 CAP_U(1) #define BLUESHRK_C700 CAP_U(22) #define BLUESHRK_C701 CAP_U(22) #define BLUESHRK_C702 CAP_U(10) #define BLUESHRK_C703 CAP_U(0.033) #define BLUESHRK_C704 CAP_U(0.015) #define BLUESHRK_C705 CAP_U(0.015) #define BLUESHRK_C706 CAP_U(0.033) #define BLUESHRK_C707 CAP_U(2.2) #define BLUESHRK_C708 CAP_U(1) #define BLUESHRK_C900 CAP_U(10) static const discrete_op_amp_osc_info blueshrk_octopus_osc = { DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_CAP, BLUESHRK_R300, BLUESHRK_R303, BLUESHRK_R301, BLUESHRK_R304, BLUESHRK_R302, 0, 0, 0, /* r1, r2, r3, r4, r5, r6, r7, r8 */ BLUESHRK_C300, 12 /*c, vP */ }; static const discrete_op_amp_osc_info blueshrk_octopus_vco = { DISC_OP_AMP_OSCILLATOR_VCO_1 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_SQW, BLUESHRK_R305, BLUESHRK_R306, BLUESHRK_R307, BLUESHRK_R309, BLUESHRK_R308, 0, 0, 0, /* r1, r2, r3, r4, r5, r6, r7, r8 */ BLUESHRK_C301, 12 /*c, vP */ }; static const discrete_op_amp_1sht_info blueshrk_octopus_oneshot = { DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON, BLUESHRK_R315, BLUESHRK_R312, BLUESHRK_R314, BLUESHRK_R313, BLUESHRK_R316, /* r1, r2, r3, r4, r5 */ BLUESHRK_C303, BLUESHRK_C302, /* c1, c2 */ 0, 12 /* vN, vP */ }; static const discrete_integrate_info blueshrk_octopus_integrate = { DISC_INTEGRATE_OP_AMP_1 | DISC_OP_AMP_IS_NORTON, BLUESHRK_R318, BLUESHRK_R317, 0, BLUESHRK_C304, /* r1, r2, r3, c */ 12, 12, /* v1, vP */ 0, 0, 0 /* f0, f1, f2 */ }; static const discrete_op_amp_info blueshrk_octopus_amp = { DISC_OP_AMP_IS_NORTON, BLUESHRK_R310, BLUESHRK_R319, BLUESHRK_R320, BLUESHRK_R321, /* r1, r2, r3, r4 */ 0, 0, 12 /* c, vN, vP */ }; static const discrete_lfsr_desc blueshrk_lfsr = { DISC_CLK_IS_FREQ, 17, /* bit length */ /* the RC network fed into pin 4, has the effect of presetting all bits high at power up */ 0x1ffff, /* reset value */ 4, /* use bit 4 as XOR input 0 */ 16, /* use bit 16 as XOR input 1 */ DISC_LFSR_XOR, /* feedback stage1 is XOR */ DISC_LFSR_OR, /* feedback stage2 is just stage 1 output OR with external feed */ DISC_LFSR_REPLACE, /* feedback stage3 replaces the shifted register contents */ 0x000001, /* everything is shifted into the first bit only */ DISC_LFSR_FLAG_OUTPUT_SR_SN1, /* output is not inverted */ 12 /* output bit */ }; static const discrete_555_desc blueshrk_555_H1B = { DISC_555_OUT_ENERGY | DISC_555_OUT_DC, 5, /* B+ voltage of 555 */ DEFAULT_555_CHARGE, 12 /* the OC buffer H2 converts the output voltage to 12V. */ }; static const discrete_op_amp_osc_info blueshrk_shark_osc1 = { DISC_OP_AMP_OSCILLATOR_2 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_ENERGY, 0, BLUESHRK_R701, BLUESHRK_R703, BLUESHRK_R702, 0, BLUESHRK_R700, 0, 0, /* r1, r2, r3, r4, r5, r6, r7, r8 */ BLUESHRK_C700, 12 /*c, vP */ }; static const discrete_op_amp_osc_info blueshrk_shark_osc2 = { DISC_OP_AMP_OSCILLATOR_2 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_ENERGY, 0, BLUESHRK_R706, BLUESHRK_R708, BLUESHRK_R707, 0, BLUESHRK_R705, 0, 0, /* r1, r2, r3, r4, r5, r6, r7, r8 */ BLUESHRK_C700, 12 /*c, vP */ }; static const discrete_op_amp_osc_info blueshrk_shark_osc3 = { DISC_OP_AMP_OSCILLATOR_2 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_ENERGY, 0, BLUESHRK_R711, BLUESHRK_R713, BLUESHRK_R712, 0, BLUESHRK_R710, 0, 0, /* r1, r2, r3, r4, r5, r6, r7, r8 */ BLUESHRK_C700, 12 /*c, vP */ }; static const discrete_mixer_desc blueshrk_shark_mixer = { DISC_MIXER_IS_RESISTOR, {BLUESHRK_R704, BLUESHRK_R709, BLUESHRK_R714}, {0}, {0}, 0, 0, 0, 0, 0, 1 /* r_node, c, rI, rF, cF, cAmp, vRef, gain */ }; static const discrete_op_amp_info blueshrk_shark_amp_m3 = { DISC_OP_AMP_IS_NORTON, 0, BLUESHRK_R715 + RES_3_PARALLEL(BLUESHRK_R704, BLUESHRK_R709, BLUESHRK_R714), BLUESHRK_R716, 0, /* r1, r2, r3, r4 */ 0, 0, 12 /* c, vN, vP */ }; static const discrete_op_amp_osc_info blueshrk_shark_vco = { DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON | DISC_OP_AMP_OSCILLATOR_OUT_ENERGY, BLUESHRK_R717, BLUESHRK_R722, BLUESHRK_R719, BLUESHRK_R721, BLUESHRK_R720, /* r1, r2, r3, r4, r5 */ 0, 0, BLUESHRK_R718, /* r6, r7, r8 */ BLUESHRK_C703, 12 /*c, vP */ }; static const discrete_op_amp_info blueshrk_shark_amp_k3 = { DISC_OP_AMP_IS_NORTON, BLUESHRK_R724 + BLUESHRK_R725 + BLUESHRK_R726, /* r1 */ BLUESHRK_R723 , BLUESHRK_R727, BLUESHRK_R728, /* r2, r3, r4 */ 0, 0, 12 /* c, vN, vP */ }; static const discrete_mixer_desc blueshrk_mixer = { DISC_MIXER_IS_RESISTOR, {BLUESHRK_R324, RES_2_PARALLEL(BLUESHRK_R520, BLUESHRK_R521) + BLUESHRK_R529, BLUESHRK_R604 + BLUESHRK_R605, BLUESHRK_R730}, {0}, /* r_node */ {BLUESHRK_C305, BLUESHRK_C508, BLUESHRK_C606, BLUESHRK_C708}, 0, 0, 0, BLUESHRK_C900, 0, 1 /* rI, rF, cF, cAmp, vRef, gain */ }; static DISCRETE_SOUND_START(blueshrk_discrete) /************************************************ * Input register mapping ************************************************/ DISCRETE_INPUTX_LOGIC(BLUESHRK_OCTOPUS_EN, 12, 0, 0) DISCRETE_INPUT_LOGIC(BLUESHRK_HIT_EN) DISCRETE_INPUT_LOGIC(BLUESHRK_SHARK_EN) DISCRETE_INPUT_LOGIC(BLUESHRK_SHOT_EN) DISCRETE_INPUT_LOGIC(BLUESHRK_GAME_ON_EN) /************************************************ * Octopus sound ************************************************/ DISCRETE_OP_AMP_OSCILLATOR(NODE_20, /* IC M5, pin 5 */ 1, /* ENAB */ &blueshrk_octopus_osc) DISCRETE_OP_AMP_VCO1(NODE_21, /* IC M5, pin 10 */ 1, /* ENAB */ NODE_20, /* VMOD1 */ &blueshrk_octopus_vco) DISCRETE_OP_AMP_ONESHOT(NODE_22, /* IC J5, pin 10 */ BLUESHRK_OCTOPUS_EN, &blueshrk_octopus_oneshot) DISCRETE_INTEGRATE(NODE_23, /* IC J5, pin 5 */ NODE_22, 0, /* TRG0,TRG1 */ &blueshrk_octopus_integrate) DISCRETE_OP_AMP(BLUESHRK_OCTOPUS_SND, /* IC J5, pin 4 */ 1, /* ENAB */ NODE_21, NODE_23, /* IN0,IN1 */ &blueshrk_octopus_amp) /************************************************ * Noise ************************************************/ /* Noise clock was breadboarded and measured at 7700Hz */ DISCRETE_LFSR_NOISE(BLUESHRK_NOISE_1, /* IC N5, pin 10 (NODE_11) */ 1, 1, /* ENAB, RESET */ 7700, 12.0, 0, 12.0 / 2, &blueshrk_lfsr) /* CLK,AMPL,FEED,BIAS,LFSRTB */ DISCRETE_BIT_DECODE(BLUESHRK_NOISE_2, /* IC N5, pin 13 */ NODE_SUB(BLUESHRK_NOISE_1, 1), 8, 12) /* INP,BIT_N,VOUT */ /************************************************ * Shot sound ************************************************/ DISCRETE_CONSTANT(BLUESHRK_SHOT_SND, 0) /* placeholder for incomplete sound */ /************************************************ * Hit sound ************************************************/ DISCRETE_COUNTER(NODE_40, /* IC H3, pin 5 */ 1, BLUESHRK_HIT_EN, /* ENAB,RESET */ FREQ_OF_555(BLUESHRK_R601, 0, BLUESHRK_C600), /* CLK - IC H1, pin 9 */ 0,1, DISC_COUNT_UP, 0, /* MIN,MAX,DIR,INIT0 */ DISC_CLK_IS_FREQ) DISCRETE_SWITCH(NODE_41, /* value of toggled caps */ 1, /* ENAB */ NODE_40, /* SWITCH */ BLUESHRK_C602 + BLUESHRK_C603, /* INP0 - IC H3, pin 5 low */ BLUESHRK_C604) /* INP1 - IC H3, pin 6 low */ DISCRETE_555_ASTABLE(BLUESHRK_HIT_SND, /* IC H2, pin 2 */ BLUESHRK_HIT_EN, /* RESET */ BLUESHRK_R602, BLUESHRK_R603, NODE_41, /* R1,R2,C */ &blueshrk_555_H1B) /************************************************ * Shark sound ************************************************/ DISCRETE_OP_AMP_OSCILLATOR(NODE_50, /* IC M3, pin 4 */ 1, /* ENAB */ &blueshrk_shark_osc1) DISCRETE_OP_AMP_OSCILLATOR(NODE_51, /* IC M3, pin 5 */ 1, /* ENAB */ &blueshrk_shark_osc2) DISCRETE_OP_AMP_OSCILLATOR(NODE_52, /* IC M3, pin 9 */ 1, /* ENAB */ &blueshrk_shark_osc3) DISCRETE_MIXER3(NODE_53, 1, /* ENAB */ NODE_50, NODE_51, NODE_52, &blueshrk_shark_mixer) /* threshold detector */ /* if any of the above oscillators are low, then the output is low */ DISCRETE_OP_AMP(NODE_54, /* IC M3, pin 10 */ 1, /* ENAB */ 0, NODE_53, /* IN0,IN1 */ &blueshrk_shark_amp_m3) DISCRETE_ADDER2(NODE_55, /* diode drops voltage */ 1, NODE_54, -0.7) /* ENAB,IN0,IN1 */ DISCRETE_CLAMP(NODE_56, NODE_55, 0, 12) /* IN0,MIN,MAX */ /* VCO disabled if any of the above oscillators or enable are low */ DISCRETE_OP_AMP_VCO1(NODE_57, /* IC K3, pin 5 */ BLUESHRK_SHARK_EN, NODE_56, /* ENAB,VMOD1 */ &blueshrk_shark_vco) DISCRETE_RCFILTER(NODE_58, BLUESHRK_NOISE_1, /* IN0 */ BLUESHRK_R724, BLUESHRK_C704) DISCRETE_RCFILTER(NODE_59, NODE_58, /* IN0 */ BLUESHRK_R724 + BLUESHRK_R725, BLUESHRK_C704) DISCRETE_RCFILTER(NODE_60, NODE_59, /* IN0 */ BLUESHRK_R724 + BLUESHRK_R725 + BLUESHRK_R726, BLUESHRK_C704) DISCRETE_OP_AMP(NODE_61, /* IC K3, pin 10 */ 1, /* ENAB */ NODE_60, NODE_57, /* IN0,IN1 */ &blueshrk_shark_amp_k3) /* the opamp output is connected directly to a capacitor */ /* we will simulate this using a 1 ohm resistor */ DISCRETE_RCFILTER(BLUESHRK_SHARK_SND, NODE_61, /* IN0 */ 1, BLUESHRK_C707) /************************************************ * Combine all sound sources. ************************************************/ DISCRETE_MIXER4(NODE_91, BLUESHRK_GAME_ON_EN, BLUESHRK_OCTOPUS_SND, BLUESHRK_SHOT_SND, BLUESHRK_HIT_SND, BLUESHRK_SHARK_SND, &blueshrk_mixer) DISCRETE_OUTPUT(NODE_91, 90000) DISCRETE_SOUND_END void mw8080bw_state::blueshrk_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); DISCRETE(config, m_discrete, blueshrk_discrete); m_discrete->add_route(ALL_OUTPUTS, "mono", 0.25); } void mw8080bw_state::blueshrk_audio_w(uint8_t data) { m_discrete->write(BLUESHRK_GAME_ON_EN, (data >> 0) & 0x01); m_discrete->write(BLUESHRK_SHOT_EN, (data >> 1) & 0x01); m_discrete->write(BLUESHRK_HIT_EN, (data >> 2) & 0x01); m_discrete->write(BLUESHRK_SHARK_EN, (data >> 3) & 0x01); /* if (data & 0x10) enable KILLED DIVER sound, this circuit doesn't appear to be on the schematics */ m_discrete->write(BLUESHRK_OCTOPUS_EN, (data >> 5) & 0x01); /* D6 and D7 are not connected */ }