// license:BSD-3-Clause // copyright-holders:Curt Coder /********************************************************************* formats/victor9k_dsk.c Victor 9000 sector disk image format *********************************************************************/ /* Sector format ------------- Header sync Sector header (header ID, track ID, sector ID, and checksum) Gap 1 Data Sync Data field (data sync, data ID, data bytes, and checksum) Gap 2 Track format ------------ ZONE LOWER HEAD UPPER HEAD SECTORS ROTATIONAL RPM NUMBER TRACKS TRACKS PER TRACK PERIOD (MS) 0 0-3 unused 19 237.9 252 1 4-15 0-7 18 224.5 267 2 16-26 8-18 17 212.2 283 3 27-37 19-29 16 199.9 300 4 38-48 30-40 15 187.6 320 5 49-59 41-51 14 175.3 342 6 60-70 52-62 13 163.0 368 7 71-79 63-74 12 149.6 401 8 unused 75-79 11 144.0 417 Interleave factor 3 cell 2.13 usec Boot Disc Label Format Track 0 Sector 0 Byte Offset Name Description 0 System disc ID literally, ff,00h for a system disc 2 Load address paragraph to load booted program at. If zero then boot loads in high memory. 4 Length paragraph count to load. 6 Entry offset I.P. value for transfer of control. 8 Entry segment C.S. value for transfer of control. 10 I.D. disc identifier. 18 Part number system identifier - displayed by early versions of boot. 26 Sector size byte count for sectors. 28 Data start first data sector on disc (absolute sectors). 30 Boot start first absolute sector of program for boot to load at 'load address' for 'length' paragraphs. 32 Flags indicators: bit meaning 15-12 interleave factor (0-15) 0 0=single sided 1=double sided 34 Disc type 00 = CP/M 01 = MS-DOS 35 Reserved 38 Speed table information for speed control proc. 56 Zone table high track for each zone. 71 Sector/track sectors per track for each zone. */ #include "formats/victor9k_dsk.h" #include "coretmpl.h" // util::BIT #include "ioprocs.h" #include "osdcore.h" // osd_printf_* #include victor9k_format::victor9k_format() { } const char *victor9k_format::name() const { return "victor9k"; } const char *victor9k_format::description() const { return "Victor 9000 disk image"; } const char *victor9k_format::extensions() const { return "img"; } int victor9k_format::find_size(util::random_read &io, uint32_t form_factor) { uint64_t size; if(io.length(size)) return -1; for(int i=0; formats[i].sector_count; i++) { const format &f = formats[i]; if(size == (uint32_t) f.sector_count*f.sector_base_size*f.head_count) return i; } return -1; } int victor9k_format::identify(util::random_read &io, uint32_t form_factor, const std::vector &variants) const { int type = find_size(io, form_factor); if (type != -1) return FIFID_SIZE; return 0; } void victor9k_format::log_boot_sector(uint8_t *data) { // System disc ID osd_printf_verbose("System disc: %s\n", ((data[0] == 0xff) && (data[1] == 0x00)) ? "yes" : "no"); // Load address osd_printf_verbose("Load address: %04x\n", (data[1] << 8) | data[2]); // Length osd_printf_verbose("Length: %04x\n", (data[3] << 8) | data[4]); // Entry offset osd_printf_verbose("Entry offset: %04x\n", (data[5] << 8) | data[6]); // Entry segment osd_printf_verbose("Entry segment: %04x\n", (data[7] << 8) | data[8]); // I.D. //osd_printf_verbose("I.D.: %s\n", data[10]); // Part number //osd_printf_verbose("Part number: %s\n", data[18]); // Sector size osd_printf_verbose("Sector size: %04x\n", (data[25] << 8) | data[26]); // Data start osd_printf_verbose("Data start: %04x\n", (data[27] << 8) | data[28]); // Boot start osd_printf_verbose("Boot start: %04x\n", (data[29] << 8) | data[30]); // Flags osd_printf_verbose("%s sided\n", util::BIT(data[33], 0) ? "Double" : "Single"); osd_printf_verbose("Interleave factor: %u\n", data[32] >> 4); // Disc type switch (data[34]) { case 0x00: osd_printf_verbose("Disc type: CP/M\n"); break; case 0x01: osd_printf_verbose("Disc type: MS-DOS\n"); break; default: osd_printf_verbose("Disc type: unknown\n"); break; } // Speed table osd_printf_verbose("Speed table: "); for (int i = 38; i < 56; i++) { osd_printf_verbose("%02x ", data[i]); } osd_printf_verbose("\n"); // Zone table osd_printf_verbose("Zone table: "); for (int i = 56; i < 71; i++) { osd_printf_verbose("%02x ", data[i]); } osd_printf_verbose("\n"); // Sector/track osd_printf_verbose("Sector/track: "); for (int i = 71; i < 86; i++) { osd_printf_verbose("%02x ", data[i]); } osd_printf_verbose("\n"); } floppy_image_format_t::desc_e* victor9k_format::get_sector_desc(const format &f, int ¤t_size, int sector_count) { static floppy_image_format_t::desc_e desc[] = { /* 00 */ { SECTOR_INTERLEAVE_SKEW, 0, 0}, /* 01 */ { SECTOR_LOOP_START, 0, -1 }, /* 02 */ { SYNC_GCR5, 9 }, /* 03 */ { GCR5, 0x07, 1 }, /* 04 */ { CRC_VICTOR_HDR_START, 1 }, /* 05 */ { TRACK_ID_VICTOR_GCR5 }, /* 06 */ { SECTOR_ID_GCR5 }, /* 07 */ { CRC_END, 1 }, /* 08 */ { CRC, 1 }, /* 09 */ { RAWBYTE, 0x55, 8 }, /* 10 */ { SYNC_GCR5, 5 }, /* 11 */ { GCR5, 0x08, 1 }, /* 12 */ { CRC_VICTOR_DATA_START, 2 }, /* 13 */ { SECTOR_DATA_GCR5, -1 }, /* 14 */ { CRC_END, 2 }, /* 15 */ { CRC, 2 }, /* 16 */ { RAWBYTE, 0x55, 8 }, /* 17 */ { SECTOR_LOOP_END }, /* 18 */ { RAWBYTE, 0x55, 0 }, /* 19 */ { RAWBITS, 0x5555, 0 }, /* 20 */ { END } }; current_size = 90 + (1+1+1+1)*10 + 8*8 + 50 + (1+f.sector_base_size+2)*10 + 8*8; current_size *= sector_count; return desc; } void victor9k_format::build_sector_description(const format &f, uint8_t *sectdata, uint32_t sect_offs, desc_s *sectors, int sector_count) { for (int i = 0; i < sector_count; i++) { sectors[i].data = sectdata + sect_offs; sectors[i].size = f.sector_base_size; sectors[i].sector_id = i; sect_offs += sectors[i].size; } } bool victor9k_format::load(util::random_read &io, uint32_t form_factor, const std::vector &variants, floppy_image *image) const { int const type = find_size(io, form_factor); if(type == -1) return false; const format &f = formats[type]; uint64_t size; if(io.length(size)) return false; std::vector img; try { img.resize(size); } catch (...) { return false; } size_t actual; io.read_at(0, &img[0], size, actual); log_boot_sector(&img[0]); int track_offset = 0; for (int head = 0; head < f.head_count; head++) { for (int track = 0; track < f.track_count; track++) { int current_size = 0; int total_size = 200000000./cell_size[speed_zone[head][track]]; int sector_count = sectors_per_track[head][track]; int track_size = sector_count*f.sector_base_size; floppy_image_format_t::desc_e *desc = get_sector_desc(f, current_size, sector_count); int remaining_size = total_size - current_size; if(remaining_size < 0) { osd_printf_error("victor9k_format: Incorrect track layout, max_size=%d, current_size=%d\n", total_size, current_size); return false; } // Fixup the end gap desc[18].p2 = remaining_size / 8; desc[19].p2 = remaining_size & 7; desc[19].p1 >>= remaining_size & 0x01; desc_s sectors[40]; build_sector_description(f, &img[0], track_offset, sectors, sector_count); generate_track(desc, track, head, sectors, sector_count, total_size, image); track_offset += track_size; } } image->set_variant(f.variant); return true; } int victor9k_format::get_rpm(int head, int track) { return rpm[speed_zone[head][track]]; } int victor9k_format::get_image_offset(const format &f, int _head, int _track) { int offset = 0; if (_head) { for (int track = 0; track < f.track_count; track++) { offset += compute_track_size(f, _head, track); } } for (int track = 0; track < _track; track++) { offset += compute_track_size(f, _head, track); } return offset; } int victor9k_format::compute_track_size(const format &f, int head, int track) { return sectors_per_track[head][track] * f.sector_base_size; } const victor9k_format::format victor9k_format::formats[] = { { // floppy_image::FF_525, floppy_image::SSDD, 1224, 80, 1, 512 }, { // floppy_image::FF_525, floppy_image::DSDD, 2448, 80, 2, 512 }, {} }; const uint32_t victor9k_format::cell_size[9] = { 1789, 1896, 2009, 2130, 2272, 2428, 2613, 2847, 2961 }; const int victor9k_format::sectors_per_track[2][80] = { { 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12 }, { 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11 } }; const int victor9k_format::speed_zone[2][80] = { { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7 }, { 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8 } }; const int victor9k_format::rpm[9] = { 252, 267, 283, 300, 321, 342, 368, 401, 417 }; bool victor9k_format::save(util::random_read_write &io, const std::vector &variants, floppy_image *image) const { const format &f = formats[0]; for(int head=0; head < f.head_count; head++) { for(int track=0; track < f.track_count; track++) { int sector_count = sectors_per_track[head][track]; int track_size = compute_track_size(f, head, track); uint8_t sectdata[40*512]; desc_s sectors[40]; int offset = get_image_offset(f, head, track); build_sector_description(f, sectdata, 0, sectors, sector_count); extract_sectors(image, f, sectors, track, head, sector_count); size_t actual; io.write_at(offset, sectdata, track_size, actual); } } return true; } void victor9k_format::extract_sectors(floppy_image *image, const format &f, desc_s *sdesc, int track, int head, int sector_count) { // Extract the sectors auto bitstream = generate_bitstream_from_track(track, head, cell_size[speed_zone[head][track]], image); auto sectors = extract_sectors_from_bitstream_victor_gcr5(bitstream); for(int i=0; i