summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/sound/fmopl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/devices/sound/fmopl.cpp')
-rw-r--r--src/devices/sound/fmopl.cpp2554
1 files changed, 0 insertions, 2554 deletions
diff --git a/src/devices/sound/fmopl.cpp b/src/devices/sound/fmopl.cpp
deleted file mode 100644
index cb4d5ae686e..00000000000
--- a/src/devices/sound/fmopl.cpp
+++ /dev/null
@@ -1,2554 +0,0 @@
-// license:GPL-2.0+
-// copyright-holders:Jarek Burczynski,Tatsuyuki Satoh
-/*
-**
-** File: fmopl.c - software implementation of FM sound generator
-** types OPL and OPL2
-**
-** Copyright Jarek Burczynski (bujar at mame dot net)
-** Copyright Tatsuyuki Satoh , MultiArcadeMachineEmulator development
-**
-** Version 0.72
-**
-
-Revision History:
-
-04-08-2003 Jarek Burczynski:
- - removed BFRDY hack. BFRDY is busy flag, and it should be 0 only when the chip
- handles memory read/write or during the adpcm synthesis when the chip
- requests another byte of ADPCM data.
-
-24-07-2003 Jarek Burczynski:
- - added a small hack for Y8950 status BFRDY flag (bit 3 should be set after
- some (unknown) delay). Right now it's always set.
-
-14-06-2003 Jarek Burczynski:
- - implemented all of the status register flags in Y8950 emulation
- - renamed y8950_set_delta_t_memory() parameters from _rom_ to _mem_ since
- they can be either RAM or ROM
-
-08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip)
- - corrected ym3526_read() to always set bit 2 and bit 1
- to HIGH state - identical to ym3812_read (verified on real YM3526)
-
-04-28-2002 Jarek Burczynski:
- - binary exact Envelope Generator (verified on real YM3812);
- compared to YM2151: the EG clock is equal to internal_clock,
- rates are 2 times slower and volume resolution is one bit less
- - modified interface functions (they no longer return pointer -
- that's internal to the emulator now):
- - new wrapper functions for OPLCreate: ym3526_init(), ym3812_init() and y8950_init()
- - corrected 'off by one' error in feedback calculations (when feedback is off)
- - enabled waveform usage (credit goes to Vlad Romascanu and zazzal22)
- - speeded up noise generator calculations (Nicola Salmoria)
-
-03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip)
- Complete rewrite (all verified on real YM3812):
- - corrected sin_tab and tl_tab data
- - corrected operator output calculations
- - corrected waveform_select_enable register;
- simply: ignore all writes to waveform_select register when
- waveform_select_enable == 0 and do not change the waveform previously selected.
- - corrected KSR handling
- - corrected Envelope Generator: attack shape, Sustain mode and
- Percussive/Non-percussive modes handling
- - Envelope Generator rates are two times slower now
- - LFO amplitude (tremolo) and phase modulation (vibrato)
- - rhythm sounds phase generation
- - white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm)
- - corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM)
- - funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1)
-
-12-28-2001 Acho A. Tang
- - reflected Delta-T EOS status on Y8950 status port.
- - fixed subscription range of attack/decay tables
-
-
- To do:
- add delay before key off in CSM mode (see CSMKeyControll)
- verify volume of the FM part on the Y8950
-*/
-
-#include "emu.h"
-#include "fmopl.h"
-#include "ymdeltat.h"
-
-
-
-/* output final shift */
-#if (OPL_SAMPLE_BITS==16)
- #define FINAL_SH (0)
- #define MAXOUT (+32767)
- #define MINOUT (-32768)
-#else
- #define FINAL_SH (8)
- #define MAXOUT (+127)
- #define MINOUT (-128)
-#endif
-
-
-#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
-#define EG_SH 16 /* 16.16 fixed point (EG timing) */
-#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
-#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
-
-#define FREQ_MASK ((1<<FREQ_SH)-1)
-
-/* envelope output entries */
-#define ENV_BITS 10
-#define ENV_LEN (1<<ENV_BITS)
-#define ENV_STEP (128.0/ENV_LEN)
-
-#define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/
-#define MIN_ATT_INDEX (0)
-
-/* sinwave entries */
-#define SIN_BITS 10
-#define SIN_LEN (1<<SIN_BITS)
-#define SIN_MASK (SIN_LEN-1)
-
-#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
-
-
-
-/* register number to channel number , slot offset */
-#define SLOT1 0
-#define SLOT2 1
-
-/* Envelope Generator phases */
-
-#define EG_ATT 4
-#define EG_DEC 3
-#define EG_SUS 2
-#define EG_REL 1
-#define EG_OFF 0
-
-
-/* save output as raw 16-bit sample */
-
-/*#define SAVE_SAMPLE*/
-
-#ifdef SAVE_SAMPLE
-static inline signed int acc_calc(signed int value)
-{
- if (value>=0)
- {
- if (value < 0x0200)
- return (value & ~0);
- if (value < 0x0400)
- return (value & ~1);
- if (value < 0x0800)
- return (value & ~3);
- if (value < 0x1000)
- return (value & ~7);
- if (value < 0x2000)
- return (value & ~15);
- if (value < 0x4000)
- return (value & ~31);
- return (value & ~63);
- }
- /*else value < 0*/
- if (value > -0x0200)
- return (~abs(value) & ~0);
- if (value > -0x0400)
- return (~abs(value) & ~1);
- if (value > -0x0800)
- return (~abs(value) & ~3);
- if (value > -0x1000)
- return (~abs(value) & ~7);
- if (value > -0x2000)
- return (~abs(value) & ~15);
- if (value > -0x4000)
- return (~abs(value) & ~31);
- return (~abs(value) & ~63);
-}
-
-
-static FILE *sample[1];
- #if 1 /*save to MONO file */
- #define SAVE_ALL_CHANNELS \
- { signed int pom = acc_calc(lt); \
- fputc((unsigned short)pom&0xff,sample[0]); \
- fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
- }
- #else /*save to STEREO file */
- #define SAVE_ALL_CHANNELS \
- { signed int pom = lt; \
- fputc((unsigned short)pom&0xff,sample[0]); \
- fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
- pom = rt; \
- fputc((unsigned short)pom&0xff,sample[0]); \
- fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
- }
- #endif
-#endif
-
-#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
-#define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */
-#define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */
-#define OPL_TYPE_IO 0x08 /* I/O port */
-
-/* ---------- Generic interface section ---------- */
-#define OPL_TYPE_YM3526 (0)
-#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
-#define OPL_TYPE_Y8950 (OPL_TYPE_ADPCM|OPL_TYPE_KEYBOARD|OPL_TYPE_IO)
-
-
-namespace {
-
-// TODO: make these static members
-
-#define RATE_STEPS (8)
-extern const unsigned char eg_rate_shift[16+64+16];
-extern const unsigned char eg_rate_select[16+64+16];
-
-
-struct OPL_SLOT
-{
- uint32_t ar; /* attack rate: AR<<2 */
- uint32_t dr; /* decay rate: DR<<2 */
- uint32_t rr; /* release rate:RR<<2 */
- uint8_t KSR; /* key scale rate */
- uint8_t ksl; /* keyscale level */
- uint8_t ksr; /* key scale rate: kcode>>KSR */
- uint8_t mul; /* multiple: mul_tab[ML] */
-
- /* Phase Generator */
- uint32_t Cnt; /* frequency counter */
- uint32_t Incr; /* frequency counter step */
- uint8_t FB; /* feedback shift value */
- int32_t *connect1; /* slot1 output pointer */
- int32_t op1_out[2]; /* slot1 output for feedback */
- uint8_t CON; /* connection (algorithm) type */
-
- /* Envelope Generator */
- uint8_t eg_type; /* percussive/non-percussive mode */
- uint8_t state; /* phase type */
- uint32_t TL; /* total level: TL << 2 */
- int32_t TLL; /* adjusted now TL */
- int32_t volume; /* envelope counter */
- uint32_t sl; /* sustain level: sl_tab[SL] */
- uint8_t eg_sh_ar; /* (attack state) */
- uint8_t eg_sel_ar; /* (attack state) */
- uint8_t eg_sh_dr; /* (decay state) */
- uint8_t eg_sel_dr; /* (decay state) */
- uint8_t eg_sh_rr; /* (release state) */
- uint8_t eg_sel_rr; /* (release state) */
- uint32_t key; /* 0 = KEY OFF, >0 = KEY ON */
-
- /* LFO */
- uint32_t AMmask; /* LFO Amplitude Modulation enable mask */
- uint8_t vib; /* LFO Phase Modulation enable flag (active high)*/
-
- /* waveform select */
- uint16_t wavetable;
-
- void KEYON(uint32_t key_set)
- {
- if( !key )
- {
- /* restart Phase Generator */
- Cnt = 0;
- /* phase -> Attack */
- state = EG_ATT;
- }
- key |= key_set;
- }
-
- void KEYOFF(uint32_t key_clr)
- {
- if( key )
- {
- key &= key_clr;
-
- if( !key )
- {
- /* phase -> Release */
- if (state>EG_REL)
- state = EG_REL;
- }
- }
- }
-};
-
-struct OPL_CH
-{
- OPL_SLOT SLOT[2];
- /* phase generator state */
- uint32_t block_fnum; /* block+fnum */
- uint32_t fc; /* Freq. Increment base */
- uint32_t ksl_base; /* KeyScaleLevel Base step */
- uint8_t kcode; /* key code (for key scaling) */
-
-
- /* update phase increment counter of operator (also update the EG rates if necessary) */
- void CALC_FCSLOT(OPL_SLOT &SLOT)
- {
- /* (frequency) phase increment counter */
- SLOT.Incr = fc * SLOT.mul;
- int const ksr = kcode >> SLOT.KSR;
-
- if( SLOT.ksr != ksr )
- {
- SLOT.ksr = ksr;
-
- /* calculate envelope generator rates */
- if ((SLOT.ar + SLOT.ksr) < 16+62)
- {
- SLOT.eg_sh_ar = eg_rate_shift [SLOT.ar + SLOT.ksr ];
- SLOT.eg_sel_ar = eg_rate_select[SLOT.ar + SLOT.ksr ];
- }
- else
- {
- SLOT.eg_sh_ar = 0;
- SLOT.eg_sel_ar = 13*RATE_STEPS;
- }
- SLOT.eg_sh_dr = eg_rate_shift [SLOT.dr + SLOT.ksr ];
- SLOT.eg_sel_dr = eg_rate_select[SLOT.dr + SLOT.ksr ];
- SLOT.eg_sh_rr = eg_rate_shift [SLOT.rr + SLOT.ksr ];
- SLOT.eg_sel_rr = eg_rate_select[SLOT.rr + SLOT.ksr ];
- }
- }
-
- /* CSM Key Control */
- void CSMKeyControll()
- {
- SLOT[SLOT1].KEYON(4);
- SLOT[SLOT2].KEYON(4);
-
- /* The key off should happen exactly one sample later - not implemented correctly yet */
-
- SLOT[SLOT1].KEYOFF(~4);
- SLOT[SLOT2].KEYOFF(~4);
- }
-};
-
-/* OPL state */
-class FM_OPL
-{
-protected:
- FM_OPL()
-#if BUILD_Y8950
- : deltat(nullptr, [] (YM_DELTAT *p) { p->~YM_DELTAT(); })
-#endif
- {
- }
-
-public:
- ~FM_OPL()
- {
- UnLockTable();
- }
-
- /* FM channel slots */
- OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/
-
- uint32_t eg_cnt; /* global envelope generator counter */
- uint32_t eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
- uint32_t eg_timer_add; /* step of eg_timer */
- uint32_t eg_timer_overflow; /* envelope generator timer overflows every 1 sample (on real chip) */
-
- uint8_t rhythm; /* Rhythm mode */
-
- uint32_t fn_tab[1024]; /* fnumber->increment counter */
-
- /* LFO */
- uint32_t LFO_AM;
- int32_t LFO_PM;
-
- uint8_t lfo_am_depth;
- uint8_t lfo_pm_depth_range;
- uint32_t lfo_am_cnt;
- uint32_t lfo_am_inc;
- uint32_t lfo_pm_cnt;
- uint32_t lfo_pm_inc;
-
- uint32_t noise_rng; /* 23 bit noise shift register */
- uint32_t noise_p; /* current noise 'phase' */
- uint32_t noise_f; /* current noise period */
-
- uint8_t wavesel; /* waveform select enable flag */
-
- uint32_t T[2]; /* timer counters */
- uint8_t st[2]; /* timer enable */
-
-#if BUILD_Y8950
- /* Delta-T ADPCM unit (Y8950) */
-
- std::unique_ptr<YM_DELTAT, void (*)(YM_DELTAT *)> deltat;
-
- /* Keyboard and I/O ports interface */
- uint8_t portDirection;
- uint8_t portLatch;
- OPL_PORTHANDLER_R porthandler_r;
- OPL_PORTHANDLER_W porthandler_w;
- device_t * port_param;
- OPL_PORTHANDLER_R keyboardhandler_r;
- OPL_PORTHANDLER_W keyboardhandler_w;
- device_t * keyboard_param;
-#endif
-
- /* external event callback handlers */
- OPL_TIMERHANDLER timer_handler; /* TIMER handler */
- device_t *TimerParam; /* TIMER parameter */
- OPL_IRQHANDLER IRQHandler; /* IRQ handler */
- device_t *IRQParam; /* IRQ parameter */
- OPL_UPDATEHANDLER UpdateHandler;/* stream update handler */
- device_t *UpdateParam; /* stream update parameter */
-
- uint8_t type; /* chip type */
- uint8_t address; /* address register */
- uint8_t status; /* status flag */
- uint8_t statusmask; /* status mask */
- uint8_t mode; /* Reg.08 : CSM,notesel,etc. */
-
- uint32_t clock; /* master clock (Hz) */
- uint32_t rate; /* sampling rate (Hz) */
- double freqbase; /* frequency base */
- attotime TimerBase; /* Timer base time (==sampling time)*/
- device_t *device;
-
- signed int phase_modulation; /* phase modulation input (SLOT 2) */
- signed int output[1];
-#if BUILD_Y8950
- int32_t output_deltat[4]; /* for Y8950 DELTA-T, chip is mono, that 4 here is just for safety */
-#endif
-
-
- /* status set and IRQ handling */
- void STATUS_SET(int flag)
- {
- /* set status flag */
- status |= flag;
- if(!(status & 0x80))
- {
- if(status & statusmask)
- { /* IRQ on */
- status |= 0x80;
- /* callback user interrupt handler (IRQ is OFF to ON) */
- if(IRQHandler) (IRQHandler)(IRQParam,1);
- }
- }
- }
-
- /* status reset and IRQ handling */
- void STATUS_RESET(int flag)
- {
- /* reset status flag */
- status &=~flag;
- if(status & 0x80)
- {
- if (!(status & statusmask) )
- {
- status &= 0x7f;
- /* callback user interrupt handler (IRQ is ON to OFF) */
- if(IRQHandler) (IRQHandler)(IRQParam,0);
- }
- }
- }
-
- /* IRQ mask set */
- void STATUSMASK_SET(int flag)
- {
- statusmask = flag;
- /* IRQ handling check */
- STATUS_SET(0);
- STATUS_RESET(0);
- }
-
-
- /* advance LFO to next sample */
- void advance_lfo()
- {
- /* LFO */
- lfo_am_cnt += lfo_am_inc;
- if (lfo_am_cnt >= (uint32_t(LFO_AM_TAB_ELEMENTS) << LFO_SH)) /* lfo_am_table is 210 elements long */
- lfo_am_cnt -= (uint32_t(LFO_AM_TAB_ELEMENTS) << LFO_SH);
-
- uint8_t const tmp = lfo_am_table[ lfo_am_cnt >> LFO_SH ];
-
- LFO_AM = lfo_am_depth ? tmp : tmp >> 2;
-
- lfo_pm_cnt += lfo_pm_inc;
- LFO_PM = (lfo_pm_cnt>>LFO_SH & 7) | lfo_pm_depth_range;
- }
-
- /* advance to next sample */
- void advance()
- {
- eg_timer += eg_timer_add;
-
- while (eg_timer >= eg_timer_overflow)
- {
- eg_timer -= eg_timer_overflow;
-
- eg_cnt++;
-
- for (int i=0; i<9*2; i++)
- {
- OPL_CH &CH = P_CH[i/2];
- OPL_SLOT &op = CH.SLOT[i&1];
-
- /* Envelope Generator */
- switch(op.state)
- {
- case EG_ATT: /* attack phase */
- if ( !(eg_cnt & ((1<<op.eg_sh_ar)-1) ) )
- {
- op.volume += (~op.volume *
- (eg_inc[op.eg_sel_ar + ((eg_cnt>>op.eg_sh_ar)&7)])
- ) >>3;
-
- if (op.volume <= MIN_ATT_INDEX)
- {
- op.volume = MIN_ATT_INDEX;
- op.state = EG_DEC;
- }
-
- }
- break;
-
- case EG_DEC: /* decay phase */
- if ( !(eg_cnt & ((1<<op.eg_sh_dr)-1) ) )
- {
- op.volume += eg_inc[op.eg_sel_dr + ((eg_cnt>>op.eg_sh_dr)&7)];
-
- if ( op.volume >= op.sl )
- op.state = EG_SUS;
-
- }
- break;
-
- case EG_SUS: /* sustain phase */
-
- /* this is important behaviour:
- one can change percusive/non-percussive modes on the fly and
- the chip will remain in sustain phase - verified on real YM3812 */
-
- if(op.eg_type) /* non-percussive mode */
- {
- /* do nothing */
- }
- else /* percussive mode */
- {
- /* during sustain phase chip adds Release Rate (in percussive mode) */
- if ( !(eg_cnt & ((1<<op.eg_sh_rr)-1) ) )
- {
- op.volume += eg_inc[op.eg_sel_rr + ((eg_cnt>>op.eg_sh_rr)&7)];
-
- if ( op.volume >= MAX_ATT_INDEX )
- op.volume = MAX_ATT_INDEX;
- }
- /* else do nothing in sustain phase */
- }
- break;
-
- case EG_REL: /* release phase */
- if ( !(eg_cnt & ((1<<op.eg_sh_rr)-1) ) )
- {
- op.volume += eg_inc[op.eg_sel_rr + ((eg_cnt>>op.eg_sh_rr)&7)];
-
- if ( op.volume >= MAX_ATT_INDEX )
- {
- op.volume = MAX_ATT_INDEX;
- op.state = EG_OFF;
- }
-
- }
- break;
-
- default:
- break;
- }
- }
- }
-
- for (int i=0; i<9*2; i++)
- {
- OPL_CH &CH = P_CH[i/2];
- OPL_SLOT &op = CH.SLOT[i&1];
-
- /* Phase Generator */
- if(op.vib)
- {
- unsigned int block_fnum = CH.block_fnum;
- unsigned int const fnum_lfo = (block_fnum&0x0380) >> 7;
-
- signed int const lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ];
-
- if (lfo_fn_table_index_offset) /* LFO phase modulation active */
- {
- block_fnum += lfo_fn_table_index_offset;
- uint8_t const block = (block_fnum&0x1c00) >> 10;
- op.Cnt += (fn_tab[block_fnum&0x03ff] >> (7-block)) * op.mul;
- }
- else /* LFO phase modulation = zero */
- {
- op.Cnt += op.Incr;
- }
- }
- else /* LFO phase modulation disabled for this operator */
- {
- op.Cnt += op.Incr;
- }
- }
-
- /* The Noise Generator of the YM3812 is 23-bit shift register.
- * Period is equal to 2^23-2 samples.
- * Register works at sampling frequency of the chip, so output
- * can change on every sample.
- *
- * Output of the register and input to the bit 22 is:
- * bit0 XOR bit14 XOR bit15 XOR bit22
- *
- * Simply use bit 22 as the noise output.
- */
-
- noise_p += noise_f;
- int i = noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
- noise_p &= FREQ_MASK;
- while (i)
- {
- /*
- uint32_t j;
- j = ( (noise_rng) ^ (noise_rng>>14) ^ (noise_rng>>15) ^ (noise_rng>>22) ) & 1;
- noise_rng = (j<<22) | (noise_rng>>1);
- */
-
- /*
- Instead of doing all the logic operations above, we
- use a trick here (and use bit 0 as the noise output).
- The difference is only that the noise bit changes one
- step ahead. This doesn't matter since we don't know
- what is real state of the noise_rng after the reset.
- */
-
- if (noise_rng & 1) noise_rng ^= 0x800302;
- noise_rng >>= 1;
-
- i--;
- }
- }
-
- /* calculate output */
- void CALC_CH(OPL_CH &CH)
- {
- OPL_SLOT *SLOT;
- unsigned int env;
- signed int out;
-
- phase_modulation = 0;
-
- /* SLOT 1 */
- SLOT = &CH.SLOT[SLOT1];
- env = volume_calc(*SLOT);
- out = SLOT->op1_out[0] + SLOT->op1_out[1];
- SLOT->op1_out[0] = SLOT->op1_out[1];
- *SLOT->connect1 += SLOT->op1_out[0];
- SLOT->op1_out[1] = 0;
- if( env < ENV_QUIET )
- {
- if (!SLOT->FB)
- out = 0;
- SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
- }
-
- /* SLOT 2 */
- SLOT++;
- env = volume_calc(*SLOT);
- if( env < ENV_QUIET )
- output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable);
- }
-
- /*
- operators used in the rhythm sounds generation process:
-
- Envelope Generator:
-
- channel operator register number Bass High Snare Tom Top
- / slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
- 6 / 0 12 50 70 90 f0 +
- 6 / 1 15 53 73 93 f3 +
- 7 / 0 13 51 71 91 f1 +
- 7 / 1 16 54 74 94 f4 +
- 8 / 0 14 52 72 92 f2 +
- 8 / 1 17 55 75 95 f5 +
-
- Phase Generator:
-
- channel operator register number Bass High Snare Tom Top
- / slot number MULTIPLE Drum Hat Drum Tom Cymbal
- 6 / 0 12 30 +
- 6 / 1 15 33 +
- 7 / 0 13 31 + + +
- 7 / 1 16 34 ----- n o t u s e d -----
- 8 / 0 14 32 +
- 8 / 1 17 35 + +
-
- channel operator register number Bass High Snare Tom Top
- number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
- 6 12,15 B6 A6 +
-
- 7 13,16 B7 A7 + + +
-
- 8 14,17 B8 A8 + + +
-
- */
-
- /* calculate rhythm */
-
- void CALC_RH()
- {
- unsigned int const noise = BIT(noise_rng, 0);
-
- OPL_SLOT *SLOT;
- signed int out;
- unsigned int env;
-
-
- /* Bass Drum (verified on real YM3812):
- - depends on the channel 6 'connect' register:
- when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
- when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
- - output sample always is multiplied by 2
- */
-
- phase_modulation = 0;
- /* SLOT 1 */
- SLOT = &P_CH[6].SLOT[SLOT1];
- env = volume_calc(*SLOT);
-
- out = SLOT->op1_out[0] + SLOT->op1_out[1];
- SLOT->op1_out[0] = SLOT->op1_out[1];
-
- if (!SLOT->CON)
- phase_modulation = SLOT->op1_out[0];
- /* else ignore output of operator 1 */
-
- SLOT->op1_out[1] = 0;
- if( env < ENV_QUIET )
- {
- if (!SLOT->FB)
- out = 0;
- SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
- }
-
- /* SLOT 2 */
- SLOT++;
- env = volume_calc(*SLOT);
- if( env < ENV_QUIET )
- output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2;
-
-
- /* Phase generation is based on: */
- /* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */
- /* SD (16) channel 7->slot 1 */
- /* TOM (14) channel 8->slot 1 */
- /* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */
-
- /* Envelope generation based on: */
- /* HH channel 7->slot1 */
- /* SD channel 7->slot2 */
- /* TOM channel 8->slot1 */
- /* TOP channel 8->slot2 */
-
-
- /* The following formulas can be well optimized.
- I leave them in direct form for now (in case I've missed something).
- */
-
- /* High Hat (verified on real YM3812) */
- OPL_SLOT const &SLOT7_1 = P_CH[7].SLOT[SLOT1];
- OPL_SLOT const &SLOT8_2 = P_CH[8].SLOT[SLOT2];
- env = volume_calc(SLOT7_1);
- if( env < ENV_QUIET )
- {
- /* high hat phase generation:
- phase = d0 or 234 (based on frequency only)
- phase = 34 or 2d0 (based on noise)
- */
-
- /* base frequency derived from operator 1 in channel 7 */
- unsigned char const bit7 = BIT(SLOT7_1.Cnt >> FREQ_SH, 7);
- unsigned char const bit3 = BIT(SLOT7_1.Cnt >> FREQ_SH, 3);
- unsigned char const bit2 = BIT(SLOT7_1.Cnt >> FREQ_SH, 2);
-
- unsigned char const res1 = (bit2 ^ bit7) | bit3;
-
- /* when res1 = 0 phase = 0x000 | 0xd0; */
- /* when res1 = 1 phase = 0x200 | (0xd0>>2); */
- uint32_t phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
-
- /* enable gate based on frequency of operator 2 in channel 8 */
- unsigned char const bit5e= BIT(SLOT8_2.Cnt >> FREQ_SH, 5);
- unsigned char const bit3e= BIT(SLOT8_2.Cnt >> FREQ_SH, 3);
-
- unsigned char const res2 = bit3e ^ bit5e;
-
- /* when res2 = 0 pass the phase from calculation above (res1); */
- /* when res2 = 1 phase = 0x200 | (0xd0>>2); */
- if (res2)
- phase = (0x200|(0xd0>>2));
-
-
- /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
- /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
- if (phase&0x200)
- {
- if (noise)
- phase = 0x200|0xd0;
- }
- else
- /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
- /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
- {
- if (noise)
- phase = 0xd0>>2;
- }
-
- output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1.wavetable) * 2;
- }
-
- /* Snare Drum (verified on real YM3812) */
- OPL_SLOT const &SLOT7_2 = P_CH[7].SLOT[SLOT2];
- env = volume_calc(SLOT7_2);
- if( env < ENV_QUIET )
- {
- /* base frequency derived from operator 1 in channel 7 */
- unsigned char const bit8 = BIT(SLOT7_1.Cnt >> FREQ_SH, 8);
-
- /* when bit8 = 0 phase = 0x100; */
- /* when bit8 = 1 phase = 0x200; */
- uint32_t phase = bit8 ? 0x200 : 0x100;
-
- /* Noise bit XOR'es phase by 0x100 */
- /* when noisebit = 0 pass the phase from calculation above */
- /* when noisebit = 1 phase ^= 0x100; */
- /* in other words: phase ^= (noisebit<<8); */
- if (noise)
- phase ^= 0x100;
-
- output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2.wavetable) * 2;
- }
-
- /* Tom Tom (verified on real YM3812) */
- OPL_SLOT const &SLOT8_1 = P_CH[8].SLOT[SLOT1];
- env = volume_calc(SLOT8_1);
- if( env < ENV_QUIET )
- output[0] += op_calc(SLOT8_1.Cnt, env, 0, SLOT8_1.wavetable) * 2;
-
- /* Top Cymbal (verified on real YM3812) */
- env = volume_calc(SLOT8_2);
- if( env < ENV_QUIET )
- {
- /* base frequency derived from operator 1 in channel 7 */
- unsigned char const bit7 = BIT(SLOT7_1.Cnt >> FREQ_SH, 7);
- unsigned char const bit3 = BIT(SLOT7_1.Cnt >> FREQ_SH, 3);
- unsigned char const bit2 = BIT(SLOT7_1.Cnt >> FREQ_SH, 2);
-
- unsigned char const res1 = (bit2 ^ bit7) | bit3;
-
- /* when res1 = 0 phase = 0x000 | 0x100; */
- /* when res1 = 1 phase = 0x200 | 0x100; */
- uint32_t phase = res1 ? 0x300 : 0x100;
-
- /* enable gate based on frequency of operator 2 in channel 8 */
- unsigned char const bit5e= BIT(SLOT8_2.Cnt >> FREQ_SH, 5);
- unsigned char const bit3e= BIT(SLOT8_2.Cnt >> FREQ_SH, 3);
-
- unsigned char const res2 = bit3e ^ bit5e;
- /* when res2 = 0 pass the phase from calculation above (res1); */
- /* when res2 = 1 phase = 0x200 | 0x100; */
- if (res2)
- phase = 0x300;
-
- output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2.wavetable) * 2;
- }
- }
-
-
- void initialize();
-
-
- /* set multi,am,vib,EG-TYP,KSR,mul */
- void set_mul(int slot, int v)
- {
- OPL_CH &CH = P_CH[slot/2];
- OPL_SLOT &SLOT = CH.SLOT[slot&1];
-
- SLOT.mul = mul_tab[v&0x0f];
- SLOT.KSR = (v & 0x10) ? 0 : 2;
- SLOT.eg_type = (v & 0x20);
- SLOT.vib = (v & 0x40);
- SLOT.AMmask = (v & 0x80) ? ~0 : 0;
- CH.CALC_FCSLOT(SLOT);
- }
-
- /* set ksl & tl */
- void set_ksl_tl(int slot, int v)
- {
- OPL_CH &CH = P_CH[slot/2];
- OPL_SLOT &SLOT = CH.SLOT[slot&1];
-
- SLOT.ksl = ksl_shift[v >> 6];
- SLOT.TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
-
- SLOT.TLL = SLOT.TL + (CH.ksl_base >> SLOT.ksl);
- }
-
- /* set attack rate & decay rate */
- void set_ar_dr(int slot, int v)
- {
- OPL_CH &CH = P_CH[slot/2];
- OPL_SLOT &SLOT = CH.SLOT[slot&1];
-
- SLOT.ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
-
- if ((SLOT.ar + SLOT.ksr) < 16+62)
- {
- SLOT.eg_sh_ar = eg_rate_shift [SLOT.ar + SLOT.ksr ];
- SLOT.eg_sel_ar = eg_rate_select[SLOT.ar + SLOT.ksr ];
- }
- else
- {
- SLOT.eg_sh_ar = 0;
- SLOT.eg_sel_ar = 13*RATE_STEPS;
- }
-
- SLOT.dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
- SLOT.eg_sh_dr = eg_rate_shift [SLOT.dr + SLOT.ksr ];
- SLOT.eg_sel_dr = eg_rate_select[SLOT.dr + SLOT.ksr ];
- }
-
- /* set sustain level & release rate */
- void set_sl_rr(int slot, int v)
- {
- OPL_CH &CH = P_CH[slot/2];
- OPL_SLOT &SLOT = CH.SLOT[slot&1];
-
- SLOT.sl = sl_tab[ v>>4 ];
-
- SLOT.rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
- SLOT.eg_sh_rr = eg_rate_shift [SLOT.rr + SLOT.ksr ];
- SLOT.eg_sel_rr = eg_rate_select[SLOT.rr + SLOT.ksr ];
- }
-
-
- void ResetChip();
- void postload();
-
- void clock_changed(uint32_t c, uint32_t r)
- {
- clock = c;
- rate = r;
-
- /* init global tables */
- initialize();
- }
-
- int Write(int a, int v)
- {
- if( !(a&1) )
- { /* address port */
- address = v & 0xff;
- }
- else
- { /* data port */
- if (UpdateHandler) UpdateHandler(UpdateParam, 0);
- WriteReg(address, v);
- }
- return status>>7;
- }
-
- unsigned char Read(int a)
- {
- if( !(a&1) )
- {
- /* status port */
-
- #if BUILD_Y8950
-
- if(type&OPL_TYPE_ADPCM) /* Y8950 */
- {
- return (status & (statusmask|0x80)) | (deltat->PCM_BSY&1);
- }
-
- #endif
-
- /* OPL and OPL2 */
- return status & (statusmask|0x80);
- }
-
-#if BUILD_Y8950
- /* data port */
- switch(address)
- {
- case 0x05: /* KeyBoard IN */
- if(type&OPL_TYPE_KEYBOARD)
- {
- if(keyboardhandler_r)
- return keyboardhandler_r(keyboard_param);
- else
- device->logerror("Y8950: read unmapped KEYBOARD port\n");
- }
- return 0;
-
- case 0x0f: /* ADPCM-DATA */
- if(type&OPL_TYPE_ADPCM)
- {
- uint8_t val;
-
- val = deltat->ADPCM_Read();
- /*logerror("Y8950: read ADPCM value read=%02x\n",val);*/
- return val;
- }
- return 0;
-
- case 0x19: /* I/O DATA */
- if(type&OPL_TYPE_IO)
- {
- if(porthandler_r)
- return porthandler_r(port_param);
- else
- device->logerror("Y8950:read unmapped I/O port\n");
- }
- return 0;
- case 0x1a: /* PCM-DATA */
- if(type&OPL_TYPE_ADPCM)
- {
- device->logerror("Y8950 A/D conversion is accessed but not implemented !\n");
- return 0x80; /* 2's complement PCM data - result from A/D conversion */
- }
- return 0;
- }
-#endif
-
- return 0xff;
- }
-
-
- int TimerOver(int c)
- {
- if( c )
- { /* Timer B */
- STATUS_SET(0x20);
- }
- else
- { /* Timer A */
- STATUS_SET(0x40);
- /* CSM mode key,TL controll */
- if( mode & 0x80 )
- { /* CSM mode total level latch and auto key on */
- int ch;
- if(UpdateHandler) UpdateHandler(UpdateParam,0);
- for(ch=0; ch<9; ch++)
- P_CH[ch].CSMKeyControll();
- }
- }
- /* reload timer */
- if (timer_handler) (timer_handler)(TimerParam,c,TimerBase * T[c]);
- return status>>7;
- }
-
-
- /* Create one of virtual YM3812/YM3526/Y8950 */
- /* 'clock' is chip clock in Hz */
- /* 'rate' is sampling rate */
- static FM_OPL *Create(device_t *device, uint32_t clock, uint32_t rate, int type)
- {
- if (LockTable(device) == -1)
- return nullptr;
-
- /* calculate OPL state size */
- size_t state_size = sizeof(FM_OPL);
-#if BUILD_Y8950
- if (type & OPL_TYPE_ADPCM)
- state_size+= sizeof(YM_DELTAT);
-#endif
-
- /* allocate memory block */
- char *ptr = reinterpret_cast<char *>(::operator new(state_size));
- std::fill_n(ptr, state_size, 0);
-
- FM_OPL *const OPL = new(ptr) FM_OPL;
-
- ptr += sizeof(FM_OPL);
-
-#if BUILD_Y8950
- if (type & OPL_TYPE_ADPCM)
- {
- OPL->deltat.reset(reinterpret_cast<YM_DELTAT *>(ptr));
- ptr += sizeof(YM_DELTAT);
- }
-#endif
-
- OPL->device = device;
- OPL->type = type;
- OPL->clock_changed(clock, rate);
-
- return OPL;
- }
-
-
- /* Optional handlers */
-
- void SetTimerHandler(OPL_TIMERHANDLER handler, device_t *device)
- {
- timer_handler = handler;
- TimerParam = device;
- }
- void SetIRQHandler(OPL_IRQHANDLER handler, device_t *device)
- {
- IRQHandler = handler;
- IRQParam = device;
- }
- void SetUpdateHandler(OPL_UPDATEHANDLER handler, device_t *device)
- {
- UpdateHandler = handler;
- UpdateParam = device;
- }
-
-private:
- void WriteReg(int r, int v);
-
- uint32_t volume_calc(OPL_SLOT const &OP) const
- {
- return OP.TLL + uint32_t(OP.volume) + (LFO_AM & OP.AMmask);
- }
-
- static inline signed int op_calc(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
- {
- uint32_t const p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ];
-
- return (p >= TL_TAB_LEN) ? 0 : tl_tab[p];
- }
-
- static inline signed int op_calc1(uint32_t phase, unsigned int env, signed int pm, unsigned int wave_tab)
- {
- uint32_t const p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ];
-
- return (p >= TL_TAB_LEN) ? 0 : tl_tab[p];
- }
-
-
- /* lock/unlock for common table */
- static int LockTable(device_t *device)
- {
- num_lock++;
- if(num_lock>1) return 0;
-
- /* first time */
-
- /* allocate total level table (128kb space) */
- if( !init_tables() )
- {
- num_lock--;
- return -1;
- }
-
- return 0;
- }
-
- static void UnLockTable()
- {
- if(num_lock) num_lock--;
- if(num_lock) return;
-
- /* last time */
- CloseTable();
- }
-
- static int init_tables();
-
- static void CloseTable()
- {
-#ifdef SAVE_SAMPLE
- fclose(sample[0]);
-#endif
- }
-
-
- static constexpr uint32_t SC(uint32_t db) { return uint32_t(db * (2.0 / ENV_STEP)); }
-
-
- static constexpr double DV = 0.1875 / 2.0;
-
-
- /* TL_TAB_LEN is calculated as:
- * 12 - sinus amplitude bits (Y axis)
- * 2 - sinus sign bit (Y axis)
- * TL_RES_LEN - sinus resolution (X axis)
- */
- static constexpr unsigned TL_TAB_LEN = 12 * 2 * TL_RES_LEN;
- static constexpr unsigned ENV_QUIET = TL_TAB_LEN >> 4;
-
- static constexpr unsigned LFO_AM_TAB_ELEMENTS = 210;
-
- static const double ksl_tab[8*16];
- static const uint32_t ksl_shift[4];
- static const uint32_t sl_tab[16];
- static const unsigned char eg_inc[15 * RATE_STEPS];
-
- static const uint8_t mul_tab[16];
- static signed int tl_tab[TL_TAB_LEN];
- static unsigned int sin_tab[SIN_LEN * 4];
-
- static const uint8_t lfo_am_table[LFO_AM_TAB_ELEMENTS];
- static const int8_t lfo_pm_table[8 * 8 * 2];
-
- static int num_lock;
-};
-
-
-
-/* mapping of register number (offset) to slot number used by the emulator */
-static const int slot_array[32]=
-{
- 0, 2, 4, 1, 3, 5,-1,-1,
- 6, 8,10, 7, 9,11,-1,-1,
- 12,14,16,13,15,17,-1,-1,
- -1,-1,-1,-1,-1,-1,-1,-1
-};
-
-/* key scale level */
-/* table is 3dB/octave , DV converts this into 6dB/octave */
-/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
-const double FM_OPL::ksl_tab[8*16]=
-{
- /* OCT 0 */
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- /* OCT 1 */
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
- 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
- /* OCT 2 */
- 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
- 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
- 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
- 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
- /* OCT 3 */
- 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
- 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
- 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
- 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
- /* OCT 4 */
- 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
- 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
- 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
- 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
- /* OCT 5 */
- 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
- 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
- 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
- 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
- /* OCT 6 */
- 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
- 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
- 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
- 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
- /* OCT 7 */
- 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
- 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
- 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
- 19.875/DV,20.250/DV,20.625/DV,21.000/DV
-};
-
-/* 0 / 3.0 / 1.5 / 6.0 dB/OCT */
-const uint32_t FM_OPL::ksl_shift[4] = { 31, 1, 2, 0 };
-
-
-/* sustain level table (3dB per step) */
-/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
-const uint32_t FM_OPL::sl_tab[16]={
- SC( 0),SC( 1),SC( 2),SC( 3),SC( 4),SC( 5),SC( 6),SC( 7),
- SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
-};
-
-
-const unsigned char FM_OPL::eg_inc[15*RATE_STEPS]={
-/*cycle:0 1 2 3 4 5 6 7*/
-
-/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
-/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
-/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
-/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
-
-/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
-/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
-/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
-/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
-
-/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
-/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
-/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
-/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
-
-/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
-/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
-/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
-};
-
-
-#define O(a) (a*RATE_STEPS)
-
-/*note that there is no O(13) in this table - it's directly in the code */
-const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
-/* 16 infinite time rates */
-O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
-O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
-
-/* rates 00-12 */
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-
-/* rate 13 */
-O( 4),O( 5),O( 6),O( 7),
-
-/* rate 14 */
-O( 8),O( 9),O(10),O(11),
-
-/* rate 15 */
-O(12),O(12),O(12),O(12),
-
-/* 16 dummy rates (same as 15 3) */
-O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
-O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
-
-};
-#undef O
-
-/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
-/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
-/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
-
-#define O(a) (a*1)
-const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
-/* 16 infinite time rates */
-O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
-O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
-
-/* rates 00-12 */
-O(12),O(12),O(12),O(12),
-O(11),O(11),O(11),O(11),
-O(10),O(10),O(10),O(10),
-O( 9),O( 9),O( 9),O( 9),
-O( 8),O( 8),O( 8),O( 8),
-O( 7),O( 7),O( 7),O( 7),
-O( 6),O( 6),O( 6),O( 6),
-O( 5),O( 5),O( 5),O( 5),
-O( 4),O( 4),O( 4),O( 4),
-O( 3),O( 3),O( 3),O( 3),
-O( 2),O( 2),O( 2),O( 2),
-O( 1),O( 1),O( 1),O( 1),
-O( 0),O( 0),O( 0),O( 0),
-
-/* rate 13 */
-O( 0),O( 0),O( 0),O( 0),
-
-/* rate 14 */
-O( 0),O( 0),O( 0),O( 0),
-
-/* rate 15 */
-O( 0),O( 0),O( 0),O( 0),
-
-/* 16 dummy rates (same as 15 3) */
-O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
-O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
-
-};
-#undef O
-
-
-/* multiple table */
-#define ML 2
-const uint8_t FM_OPL::mul_tab[16]= {
-/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
- ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML,
- 8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML
-};
-#undef ML
-
-signed int FM_OPL::tl_tab[TL_TAB_LEN];
-
-/* sin waveform table in 'decibel' scale */
-/* four waveforms on OPL2 type chips */
-unsigned int FM_OPL::sin_tab[SIN_LEN * 4];
-
-
-/* LFO Amplitude Modulation table (verified on real YM3812)
- 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
-
- Length: 210 elements.
-
- Each of the elements has to be repeated
- exactly 64 times (on 64 consecutive samples).
- The whole table takes: 64 * 210 = 13440 samples.
-
- When AM = 1 data is used directly
- When AM = 0 data is divided by 4 before being used (losing precision is important)
-*/
-
-const uint8_t FM_OPL::lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
-0,0,0,0,0,0,0,
-1,1,1,1,
-2,2,2,2,
-3,3,3,3,
-4,4,4,4,
-5,5,5,5,
-6,6,6,6,
-7,7,7,7,
-8,8,8,8,
-9,9,9,9,
-10,10,10,10,
-11,11,11,11,
-12,12,12,12,
-13,13,13,13,
-14,14,14,14,
-15,15,15,15,
-16,16,16,16,
-17,17,17,17,
-18,18,18,18,
-19,19,19,19,
-20,20,20,20,
-21,21,21,21,
-22,22,22,22,
-23,23,23,23,
-24,24,24,24,
-25,25,25,25,
-26,26,26,
-25,25,25,25,
-24,24,24,24,
-23,23,23,23,
-22,22,22,22,
-21,21,21,21,
-20,20,20,20,
-19,19,19,19,
-18,18,18,18,
-17,17,17,17,
-16,16,16,16,
-15,15,15,15,
-14,14,14,14,
-13,13,13,13,
-12,12,12,12,
-11,11,11,11,
-10,10,10,10,
-9,9,9,9,
-8,8,8,8,
-7,7,7,7,
-6,6,6,6,
-5,5,5,5,
-4,4,4,4,
-3,3,3,3,
-2,2,2,2,
-1,1,1,1
-};
-
-/* LFO Phase Modulation table (verified on real YM3812) */
-const int8_t FM_OPL::lfo_pm_table[8*8*2] = {
-/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
-0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
-0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
-0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
-1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
-1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
-2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
-1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
-3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
-2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
-4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
-2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
-5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
-3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
-6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
-3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
-7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
-};
-
-
-/* lock level of common table */
-int FM_OPL::num_lock = 0;
-
-
-#if 0
-static inline int limit( int val, int max, int min ) {
- if ( val > max )
- val = max;
- else if ( val < min )
- val = min;
-
- return val;
-}
-#endif
-
-/* generic table initialize */
-int FM_OPL::init_tables()
-{
- signed int i,x;
- signed int n;
- double o,m;
-
-
- for (x=0; x<TL_RES_LEN; x++)
- {
- m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
- m = floor(m);
-
- /* we never reach (1<<16) here due to the (x+1) */
- /* result fits within 16 bits at maximum */
-
- n = (int)m; /* 16 bits here */
- n >>= 4; /* 12 bits here */
- if (n&1) /* round to nearest */
- n = (n>>1)+1;
- else
- n = n>>1;
- /* 11 bits here (rounded) */
- n <<= 1; /* 12 bits here (as in real chip) */
- tl_tab[ x*2 + 0 ] = n;
- tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
-
- for (i=1; i<12; i++)
- {
- tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
- tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
- }
- #if 0
- logerror("tl %04i", x*2);
- for (i=0; i<12; i++)
- logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] );
- logerror("\n");
- #endif
- }
- /*logerror("FMOPL.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/
-
-
- for (i=0; i<SIN_LEN; i++)
- {
- /* non-standard sinus */
- m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
-
- /* we never reach zero here due to ((i*2)+1) */
-
- if (m>0.0)
- o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
- else
- o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
-
- o = o / (ENV_STEP/4);
-
- n = (int)(2.0*o);
- if (n&1) /* round to nearest */
- n = (n>>1)+1;
- else
- n = n>>1;
-
- sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
-
- /*logerror("FMOPL.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/
- }
-
- for (i=0; i<SIN_LEN; i++)
- {
- /* waveform 1: __ __ */
- /* / \____/ \____*/
- /* output only first half of the sinus waveform (positive one) */
-
- if (i & (1<<(SIN_BITS-1)) )
- sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
- else
- sin_tab[1*SIN_LEN+i] = sin_tab[i];
-
- /* waveform 2: __ __ __ __ */
- /* / \/ \/ \/ \*/
- /* abs(sin) */
-
- sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ];
-
- /* waveform 3: _ _ _ _ */
- /* / |_/ |_/ |_/ |_*/
- /* abs(output only first quarter of the sinus waveform) */
-
- if (i & (1<<(SIN_BITS-2)) )
- sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
- else
- sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
-
- /*logerror("FMOPL.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] );
- logerror("FMOPL.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] );
- logerror("FMOPL.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );*/
- }
- /*logerror("FMOPL.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/
-
-
-#ifdef SAVE_SAMPLE
- sample[0]=fopen("sampsum.pcm","wb");
-#endif
-
- return 1;
-}
-
-
-void FM_OPL::initialize()
-{
- int i;
-
- /* frequency base */
- freqbase = (rate) ? ((double)clock / 72.0) / rate : 0;
-#if 0
- rate = (double)clock / 72.0;
- freqbase = 1.0;
-#endif
-
- /*logerror("freqbase=%f\n", freqbase);*/
-
- /* Timer base time */
- TimerBase = clock ? attotime::from_hz(clock) * 72 : attotime::zero;
-
- /* make fnumber -> increment counter table */
- for( i=0 ; i < 1024 ; i++ )
- {
- /* opn phase increment counter = 20bit */
- fn_tab[i] = (uint32_t)( (double)i * 64 * freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
-#if 0
- logerror("FMOPL.C: fn_tab[%4i] = %08x (dec=%8i)\n",
- i, fn_tab[i]>>6, fn_tab[i]>>6 );
-#endif
- }
-
-#if 0
- for( i=0 ; i < 16 ; i++ )
- {
- logerror("FMOPL.C: sl_tab[%i] = %08x\n",
- i, sl_tab[i] );
- }
- for( i=0 ; i < 8 ; i++ )
- {
- int j;
- logerror("FMOPL.C: ksl_tab[oct=%2i] =",i);
- for (j=0; j<16; j++)
- {
- logerror("%08x ", static_cast<uint32_t>(ksl_tab[i*16+j]) );
- }
- logerror("\n");
- }
-#endif
-
-
- /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
- /* One entry from LFO_AM_TABLE lasts for 64 samples */
- lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * freqbase;
-
- /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
- lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * freqbase;
-
- /*logerror ("lfo_am_inc = %8x ; lfo_pm_inc = %8x\n", lfo_am_inc, lfo_pm_inc);*/
-
- /* Noise generator: a step takes 1 sample */
- noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * freqbase;
-
- eg_timer_add = (1<<EG_SH) * freqbase;
- eg_timer_overflow = ( 1 ) * (1<<EG_SH);
- /*logerror("OPLinit eg_timer_add=%8x eg_timer_overflow=%8x\n", eg_timer_add, eg_timer_overflow);*/
-}
-
-
-/* write a value v to register r on OPL chip */
-void FM_OPL::WriteReg(int r, int v)
-{
- OPL_CH *CH;
- int slot;
- int block_fnum;
-
-
- /* adjust bus to 8 bits */
- r &= 0xff;
- v &= 0xff;
-
- switch(r&0xe0)
- {
- case 0x00: /* 00-1f:control */
- switch(r&0x1f)
- {
- case 0x01: /* waveform select enable */
- if(type&OPL_TYPE_WAVESEL)
- {
- wavesel = v&0x20;
- /* do not change the waveform previously selected */
- }
- break;
- case 0x02: /* Timer 1 */
- T[0] = (256-v)*4;
- break;
- case 0x03: /* Timer 2 */
- T[1] = (256-v)*16;
- break;
- case 0x04: /* IRQ clear / mask and Timer enable */
- if(v&0x80)
- { /* IRQ flag clear */
- STATUS_RESET(0x7f-0x08); /* don't reset BFRDY flag or we will have to call deltat module to set the flag */
- }
- else
- { /* set IRQ mask ,timer enable*/
- uint8_t st1 = v&1;
- uint8_t st2 = (v>>1)&1;
-
- /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
- STATUS_RESET(v & (0x78-0x08));
- STATUSMASK_SET((~v) & 0x78);
-
- /* timer 2 */
- if(st[1] != st2)
- {
- attotime period = st2 ? (TimerBase * T[1]) : attotime::zero;
- st[1] = st2;
- if (timer_handler) (timer_handler)(TimerParam,1,period);
- }
- /* timer 1 */
- if(st[0] != st1)
- {
- attotime period = st1 ? (TimerBase * T[0]) : attotime::zero;
- st[0] = st1;
- if (timer_handler) (timer_handler)(TimerParam,0,period);
- }
- }
- break;
-#if BUILD_Y8950
- case 0x06: /* Key Board OUT */
- if(type&OPL_TYPE_KEYBOARD)
- {
- if(keyboardhandler_w)
- keyboardhandler_w(keyboard_param,v);
- else
- device->logerror("Y8950: write unmapped KEYBOARD port\n");
- }
- break;
- case 0x07: /* DELTA-T control 1 : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
- if(type&OPL_TYPE_ADPCM)
- deltat->ADPCM_Write(r-0x07,v);
- break;
-#endif
- case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
- mode = v;
-#if BUILD_Y8950
- if(type&OPL_TYPE_ADPCM)
- deltat->ADPCM_Write(r-0x07,v&0x0f); /* mask 4 LSBs in register 08 for DELTA-T unit */
-#endif
- break;
-
-#if BUILD_Y8950
- case 0x09: /* START ADD */
- case 0x0a:
- case 0x0b: /* STOP ADD */
- case 0x0c:
- case 0x0d: /* PRESCALE */
- case 0x0e:
- case 0x0f: /* ADPCM data write */
- case 0x10: /* DELTA-N */
- case 0x11: /* DELTA-N */
- case 0x12: /* ADPCM volume */
- if(type&OPL_TYPE_ADPCM)
- deltat->ADPCM_Write(r-0x07,v);
- break;
-
- case 0x15: /* DAC data high 8 bits (F7,F6...F2) */
- case 0x16: /* DAC data low 2 bits (F1, F0 in bits 7,6) */
- case 0x17: /* DAC data shift (S2,S1,S0 in bits 2,1,0) */
- device->logerror("FMOPL.C: DAC data register written, but not implemented reg=%02x val=%02x\n",r,v);
- break;
-
- case 0x18: /* I/O CTRL (Direction) */
- if(type&OPL_TYPE_IO)
- portDirection = v&0x0f;
- break;
- case 0x19: /* I/O DATA */
- if(type&OPL_TYPE_IO)
- {
- portLatch = v;
- if(porthandler_w)
- porthandler_w(port_param,v&portDirection);
- }
- break;
-#endif
- default:
- device->logerror("FMOPL.C: write to unknown register: %02x\n",r);
- break;
- }
- break;
- case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
- slot = slot_array[r&0x1f];
- if(slot < 0) return;
- set_mul(slot,v);
- break;
- case 0x40:
- slot = slot_array[r&0x1f];
- if(slot < 0) return;
- set_ksl_tl(slot,v);
- break;
- case 0x60:
- slot = slot_array[r&0x1f];
- if(slot < 0) return;
- set_ar_dr(slot,v);
- break;
- case 0x80:
- slot = slot_array[r&0x1f];
- if(slot < 0) return;
- set_sl_rr(slot,v);
- break;
- case 0xa0:
- if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */
- {
- lfo_am_depth = v & 0x80;
- lfo_pm_depth_range = (v&0x40) ? 8 : 0;
-
- rhythm = v&0x3f;
-
- if(rhythm&0x20)
- {
- /* BD key on/off */
- if(v&0x10)
- {
- P_CH[6].SLOT[SLOT1].KEYON(2);
- P_CH[6].SLOT[SLOT2].KEYON(2);
- }
- else
- {
- P_CH[6].SLOT[SLOT1].KEYOFF(~2);
- P_CH[6].SLOT[SLOT2].KEYOFF(~2);
- }
- /* HH key on/off */
- if(v&0x01) P_CH[7].SLOT[SLOT1].KEYON ( 2);
- else P_CH[7].SLOT[SLOT1].KEYOFF(~2);
- /* SD key on/off */
- if(v&0x08) P_CH[7].SLOT[SLOT2].KEYON ( 2);
- else P_CH[7].SLOT[SLOT2].KEYOFF(~2);
- /* TOM key on/off */
- if(v&0x04) P_CH[8].SLOT[SLOT1].KEYON ( 2);
- else P_CH[8].SLOT[SLOT1].KEYOFF(~2);
- /* TOP-CY key on/off */
- if(v&0x02) P_CH[8].SLOT[SLOT2].KEYON ( 2);
- else P_CH[8].SLOT[SLOT2].KEYOFF(~2);
- }
- else
- {
- /* BD key off */
- P_CH[6].SLOT[SLOT1].KEYOFF(~2);
- P_CH[6].SLOT[SLOT2].KEYOFF(~2);
- /* HH key off */
- P_CH[7].SLOT[SLOT1].KEYOFF(~2);
- /* SD key off */
- P_CH[7].SLOT[SLOT2].KEYOFF(~2);
- /* TOM key off */
- P_CH[8].SLOT[SLOT1].KEYOFF(~2);
- /* TOP-CY off */
- P_CH[8].SLOT[SLOT2].KEYOFF(~2);
- }
- return;
- }
- /* keyon,block,fnum */
- if( (r&0x0f) > 8) return;
- CH = &P_CH[r&0x0f];
- if(!(r&0x10))
- { /* a0-a8 */
- block_fnum = (CH->block_fnum&0x1f00) | v;
- }
- else
- { /* b0-b8 */
- block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
-
- if(v&0x20)
- {
- CH->SLOT[SLOT1].KEYON ( 1);
- CH->SLOT[SLOT2].KEYON ( 1);
- }
- else
- {
- CH->SLOT[SLOT1].KEYOFF(~1);
- CH->SLOT[SLOT2].KEYOFF(~1);
- }
- }
- /* update */
- if(CH->block_fnum != block_fnum)
- {
- uint8_t block = block_fnum >> 10;
-
- CH->block_fnum = block_fnum;
-
- CH->ksl_base = static_cast<uint32_t>(ksl_tab[block_fnum>>6]);
- CH->fc = fn_tab[block_fnum&0x03ff] >> (7-block);
-
- /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */
- CH->kcode = (CH->block_fnum&0x1c00)>>9;
-
- /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */
- /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */
- /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */
- if (mode&0x40)
- CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */
- else
- CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */
-
- /* refresh Total Level in both SLOTs of this channel */
- CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
- CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
-
- /* refresh frequency counter in both SLOTs of this channel */
- CH->CALC_FCSLOT(CH->SLOT[SLOT1]);
- CH->CALC_FCSLOT(CH->SLOT[SLOT2]);
- }
- break;
- case 0xc0:
- /* FB,C */
- if( (r&0x0f) > 8) return;
- CH = &P_CH[r&0x0f];
- CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
- CH->SLOT[SLOT1].CON = v&1;
- CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &output[0] : &phase_modulation;
- break;
- case 0xe0: /* waveform select */
- /* simply ignore write to the waveform select register if selecting not enabled in test register */
- if(wavesel)
- {
- slot = slot_array[r&0x1f];
- if(slot < 0) return;
- CH = &P_CH[slot/2];
-
- CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN;
- }
- break;
- }
-}
-
-
-void FM_OPL::ResetChip()
-{
- eg_timer = 0;
- eg_cnt = 0;
-
- noise_rng = 1; /* noise shift register */
- mode = 0; /* normal mode */
- STATUS_RESET(0x7f);
-
- /* reset with register write */
- WriteReg(0x01,0); /* wavesel disable */
- WriteReg(0x02,0); /* Timer1 */
- WriteReg(0x03,0); /* Timer2 */
- WriteReg(0x04,0); /* IRQ mask clear */
- for(int i = 0xff ; i >= 0x20 ; i-- ) WriteReg(i,0);
-
- /* reset operator parameters */
- for(OPL_CH &CH : P_CH)
- {
- for(OPL_SLOT &SLOT : CH.SLOT)
- {
- /* wave table */
- SLOT.wavetable = 0;
- SLOT.state = EG_OFF;
- SLOT.volume = MAX_ATT_INDEX;
- }
- }
-#if BUILD_Y8950
- if(type&OPL_TYPE_ADPCM)
- {
- deltat->freqbase = freqbase;
- deltat->output_pointer = &output_deltat[0];
- deltat->portshift = 5;
- deltat->output_range = 1<<23;
- deltat->ADPCM_Reset(0,YM_DELTAT::EMULATION_MODE_NORMAL,device);
- }
-#endif
-}
-
-
-void FM_OPL::postload()
-{
- for(OPL_CH &CH : P_CH)
- {
- /* Look up key scale level */
- uint32_t const block_fnum = CH.block_fnum;
- CH.ksl_base = static_cast<uint32_t>(ksl_tab[block_fnum >> 6]);
- CH.fc = fn_tab[block_fnum & 0x03ff] >> (7 - (block_fnum >> 10));
-
- for(OPL_SLOT &SLOT : CH.SLOT)
- {
- /* Calculate key scale rate */
- SLOT.ksr = CH.kcode >> SLOT.KSR;
-
- /* Calculate attack, decay and release rates */
- if ((SLOT.ar + SLOT.ksr) < 16+62)
- {
- SLOT.eg_sh_ar = eg_rate_shift [SLOT.ar + SLOT.ksr ];
- SLOT.eg_sel_ar = eg_rate_select[SLOT.ar + SLOT.ksr ];
- }
- else
- {
- SLOT.eg_sh_ar = 0;
- SLOT.eg_sel_ar = 13*RATE_STEPS;
- }
- SLOT.eg_sh_dr = eg_rate_shift [SLOT.dr + SLOT.ksr ];
- SLOT.eg_sel_dr = eg_rate_select[SLOT.dr + SLOT.ksr ];
- SLOT.eg_sh_rr = eg_rate_shift [SLOT.rr + SLOT.ksr ];
- SLOT.eg_sel_rr = eg_rate_select[SLOT.rr + SLOT.ksr ];
-
- /* Calculate phase increment */
- SLOT.Incr = CH.fc * SLOT.mul;
-
- /* Total level */
- SLOT.TLL = SLOT.TL + (CH.ksl_base >> SLOT.ksl);
-
- /* Connect output */
- SLOT.connect1 = SLOT.CON ? &output[0] : &phase_modulation;
- }
- }
-#if BUILD_Y8950
- if ( (type & OPL_TYPE_ADPCM) && (deltat) )
- {
- // We really should call the postlod function for the YM_DELTAT, but it's hard without registers
- // (see the way the YM2610 does it)
- //deltat->postload(REGS);
- }
-#endif
-}
-
-} // anonymous namespace
-
-
-static void OPLsave_state_channel(device_t *device, OPL_CH *CH)
-{
- int slot, ch;
-
- for( ch=0 ; ch < 9 ; ch++, CH++ )
- {
- /* channel */
- device->save_item(NAME(CH->block_fnum), ch);
- device->save_item(NAME(CH->kcode), ch);
- /* slots */
- for( slot=0 ; slot < 2 ; slot++ )
- {
- OPL_SLOT *SLOT = &CH->SLOT[slot];
-
- device->save_item(NAME(SLOT->ar), ch * 2 + slot);
- device->save_item(NAME(SLOT->dr), ch * 2 + slot);
- device->save_item(NAME(SLOT->rr), ch * 2 + slot);
- device->save_item(NAME(SLOT->KSR), ch * 2 + slot);
- device->save_item(NAME(SLOT->ksl), ch * 2 + slot);
- device->save_item(NAME(SLOT->mul), ch * 2 + slot);
-
- device->save_item(NAME(SLOT->Cnt), ch * 2 + slot);
- device->save_item(NAME(SLOT->FB), ch * 2 + slot);
- device->save_item(NAME(SLOT->op1_out), ch * 2 + slot);
- device->save_item(NAME(SLOT->CON), ch * 2 + slot);
-
- device->save_item(NAME(SLOT->eg_type), ch * 2 + slot);
- device->save_item(NAME(SLOT->state), ch * 2 + slot);
- device->save_item(NAME(SLOT->TL), ch * 2 + slot);
- device->save_item(NAME(SLOT->volume), ch * 2 + slot);
- device->save_item(NAME(SLOT->sl), ch * 2 + slot);
- device->save_item(NAME(SLOT->key), ch * 2 + slot);
-
- device->save_item(NAME(SLOT->AMmask), ch * 2 + slot);
- device->save_item(NAME(SLOT->vib), ch * 2 + slot);
-
- device->save_item(NAME(SLOT->wavetable), ch * 2 + slot);
- }
- }
-}
-
-
-/* Register savestate for a virtual YM3812/YM3526Y8950 */
-
-static void OPL_save_state(FM_OPL *OPL, device_t *device)
-{
- OPLsave_state_channel(device, OPL->P_CH);
-
- device->save_item(NAME(OPL->eg_cnt));
- device->save_item(NAME(OPL->eg_timer));
-
- device->save_item(NAME(OPL->rhythm));
-
- device->save_item(NAME(OPL->lfo_am_depth));
- device->save_item(NAME(OPL->lfo_pm_depth_range));
- device->save_item(NAME(OPL->lfo_am_cnt));
- device->save_item(NAME(OPL->lfo_pm_cnt));
-
- device->save_item(NAME(OPL->noise_rng));
- device->save_item(NAME(OPL->noise_p));
-
- if( OPL->type & OPL_TYPE_WAVESEL )
- {
- device->save_item(NAME(OPL->wavesel));
- }
-
- device->save_item(NAME(OPL->T));
- device->save_item(NAME(OPL->st));
-
-#if BUILD_Y8950
- if ( (OPL->type & OPL_TYPE_ADPCM) && (OPL->deltat) )
- {
- OPL->deltat->savestate(device);
- }
-
- if ( OPL->type & OPL_TYPE_IO )
- {
- device->save_item(NAME(OPL->portDirection));
- device->save_item(NAME(OPL->portLatch));
- }
-#endif
-
- device->save_item(NAME(OPL->address));
- device->save_item(NAME(OPL->status));
- device->save_item(NAME(OPL->statusmask));
- device->save_item(NAME(OPL->mode));
-
- device->machine().save().register_postload(save_prepost_delegate(FUNC(FM_OPL::postload), OPL));
-}
-
-
-#define MAX_OPL_CHIPS 2
-
-
-#if (BUILD_YM3812)
-
-void ym3812_clock_changed(void *chip, uint32_t clock, uint32_t rate)
-{
- reinterpret_cast<FM_OPL *>(chip)->clock_changed(clock, rate);
-}
-
-void * ym3812_init(device_t *device, uint32_t clock, uint32_t rate)
-{
- /* emulator create */
- FM_OPL *YM3812 = FM_OPL::Create(device,clock,rate,OPL_TYPE_YM3812);
- if (YM3812)
- {
- OPL_save_state(YM3812, device);
- ym3812_reset_chip(YM3812);
- }
- return YM3812;
-}
-
-void ym3812_shutdown(void *chip)
-{
- FM_OPL *YM3812 = (FM_OPL *)chip;
-
- /* emulator shutdown */
- delete YM3812;
-}
-void ym3812_reset_chip(void *chip)
-{
- FM_OPL *YM3812 = (FM_OPL *)chip;
- YM3812->ResetChip();
-}
-
-int ym3812_write(void *chip, int a, int v)
-{
- FM_OPL *YM3812 = (FM_OPL *)chip;
- return YM3812->Write(a, v);
-}
-
-unsigned char ym3812_read(void *chip, int a)
-{
- FM_OPL *YM3812 = (FM_OPL *)chip;
- /* YM3812 always returns bit2 and bit1 in HIGH state */
- return YM3812->Read(a) | 0x06 ;
-}
-int ym3812_timer_over(void *chip, int c)
-{
- FM_OPL *YM3812 = (FM_OPL *)chip;
- return YM3812->TimerOver(c);
-}
-
-void ym3812_set_timer_handler(void *chip, OPL_TIMERHANDLER timer_handler, device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetTimerHandler(timer_handler, device);
-}
-void ym3812_set_irq_handler(void *chip,OPL_IRQHANDLER IRQHandler,device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetIRQHandler(IRQHandler, device);
-}
-void ym3812_set_update_handler(void *chip,OPL_UPDATEHANDLER UpdateHandler,device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetUpdateHandler(UpdateHandler, device);
-}
-
-
-/*
-** Generate samples for one of the YM3812's
-**
-** 'which' is the virtual YM3812 number
-** '*buffer' is the output buffer pointer
-** 'length' is the number of samples that should be generated
-*/
-void ym3812_update_one(void *chip, write_stream_view &buf)
-{
- FM_OPL *OPL = (FM_OPL *)chip;
- uint8_t rhythm = OPL->rhythm&0x20;
- int i;
-
- for( i=0; i < buf.samples(); i++ )
- {
- int lt;
-
- OPL->output[0] = 0;
-
- OPL->advance_lfo();
-
- /* FM part */
- OPL->CALC_CH(OPL->P_CH[0]);
- OPL->CALC_CH(OPL->P_CH[1]);
- OPL->CALC_CH(OPL->P_CH[2]);
- OPL->CALC_CH(OPL->P_CH[3]);
- OPL->CALC_CH(OPL->P_CH[4]);
- OPL->CALC_CH(OPL->P_CH[5]);
-
- if(!rhythm)
- {
- OPL->CALC_CH(OPL->P_CH[6]);
- OPL->CALC_CH(OPL->P_CH[7]);
- OPL->CALC_CH(OPL->P_CH[8]);
- }
- else /* Rhythm part */
- {
- OPL->CALC_RH();
- }
-
- lt = OPL->output[0];
-
- #ifdef SAVE_SAMPLE
- if (which==0)
- {
- SAVE_ALL_CHANNELS
- }
- #endif
-
- /* store to sound buffer */
- buf.put_int_clamp(i, lt, 32768 << FINAL_SH);
-
- OPL->advance();
- }
-
-}
-#endif /* BUILD_YM3812 */
-
-
-
-#if (BUILD_YM3526)
-
-void ym3526_clock_changed(void *chip, uint32_t clock, uint32_t rate)
-{
- reinterpret_cast<FM_OPL *>(chip)->clock_changed(clock, rate);
-}
-
-void *ym3526_init(device_t *device, uint32_t clock, uint32_t rate)
-{
- /* emulator create */
- FM_OPL *YM3526 = FM_OPL::Create(device,clock,rate,OPL_TYPE_YM3526);
- if (YM3526)
- {
- OPL_save_state(YM3526, device);
- ym3526_reset_chip(YM3526);
- }
- return YM3526;
-}
-
-void ym3526_shutdown(void *chip)
-{
- FM_OPL *YM3526 = (FM_OPL *)chip;
- /* emulator shutdown */
- delete YM3526;
-}
-void ym3526_reset_chip(void *chip)
-{
- FM_OPL *YM3526 = (FM_OPL *)chip;
- YM3526->ResetChip();
-}
-
-int ym3526_write(void *chip, int a, int v)
-{
- FM_OPL *YM3526 = (FM_OPL *)chip;
- return YM3526->Write(a, v);
-}
-
-unsigned char ym3526_read(void *chip, int a)
-{
- FM_OPL *YM3526 = (FM_OPL *)chip;
- /* YM3526 always returns bit2 and bit1 in HIGH state */
- return YM3526->Read(a) | 0x06 ;
-}
-int ym3526_timer_over(void *chip, int c)
-{
- FM_OPL *YM3526 = (FM_OPL *)chip;
- return YM3526->TimerOver(c);
-}
-
-void ym3526_set_timer_handler(void *chip, OPL_TIMERHANDLER timer_handler, device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetTimerHandler(timer_handler, device);
-}
-void ym3526_set_irq_handler(void *chip,OPL_IRQHANDLER IRQHandler,device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetIRQHandler(IRQHandler, device);
-}
-void ym3526_set_update_handler(void *chip,OPL_UPDATEHANDLER UpdateHandler,device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetUpdateHandler(UpdateHandler, device);
-}
-
-
-/*
-** Generate samples for one of the YM3526's
-**
-** 'which' is the virtual YM3526 number
-** '*buffer' is the output buffer pointer
-** 'length' is the number of samples that should be generated
-*/
-void ym3526_update_one(void *chip, write_stream_view &buf)
-{
- FM_OPL *OPL = (FM_OPL *)chip;
- uint8_t rhythm = OPL->rhythm&0x20;
- int i;
-
- for( i=0; i < buf.samples() ; i++ )
- {
- int lt;
-
- OPL->output[0] = 0;
-
- OPL->advance_lfo();
-
- /* FM part */
- OPL->CALC_CH(OPL->P_CH[0]);
- OPL->CALC_CH(OPL->P_CH[1]);
- OPL->CALC_CH(OPL->P_CH[2]);
- OPL->CALC_CH(OPL->P_CH[3]);
- OPL->CALC_CH(OPL->P_CH[4]);
- OPL->CALC_CH(OPL->P_CH[5]);
-
- if(!rhythm)
- {
- OPL->CALC_CH(OPL->P_CH[6]);
- OPL->CALC_CH(OPL->P_CH[7]);
- OPL->CALC_CH(OPL->P_CH[8]);
- }
- else /* Rhythm part */
- {
- OPL->CALC_RH();
- }
-
- lt = OPL->output[0];
-
- #ifdef SAVE_SAMPLE
- if (which==0)
- {
- SAVE_ALL_CHANNELS
- }
- #endif
-
- /* store to sound buffer */
- buf.put_int_clamp(i, lt, 32768 << FINAL_SH);
-
- OPL->advance();
- }
-
-}
-#endif /* BUILD_YM3526 */
-
-
-
-
-#if BUILD_Y8950
-
-static void Y8950_deltat_status_set(void *chip, uint8_t changebits)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- Y8950->STATUS_SET(changebits);
-}
-static void Y8950_deltat_status_reset(void *chip, uint8_t changebits)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- Y8950->STATUS_RESET(changebits);
-}
-
-void y8950_clock_changed(void *chip, uint32_t clock, uint32_t rate)
-{
- reinterpret_cast<FM_OPL *>(chip)->clock_changed(clock, rate);
-}
-
-void *y8950_init(device_t *device, uint32_t clock, uint32_t rate)
-{
- /* emulator create */
- FM_OPL *Y8950 = FM_OPL::Create(device,clock,rate,OPL_TYPE_Y8950);
- if (Y8950)
- {
- Y8950->deltat->status_set_handler = Y8950_deltat_status_set;
- Y8950->deltat->status_reset_handler = Y8950_deltat_status_reset;
- Y8950->deltat->status_change_which_chip = Y8950;
- Y8950->deltat->status_change_EOS_bit = 0x10; /* status flag: set bit4 on End Of Sample */
- Y8950->deltat->status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY (End Of: ADPCM analysis/synthesis, memory reading/writing) */
-
- /*Y8950->deltat->write_time = 10.0 / clock;*/ /* a single byte write takes 10 cycles of main clock */
- /*Y8950->deltat->read_time = 8.0 / clock;*/ /* a single byte read takes 8 cycles of main clock */
- /* reset */
- OPL_save_state(Y8950, device);
- y8950_reset_chip(Y8950);
- }
-
- return Y8950;
-}
-
-void y8950_shutdown(void *chip)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- /* emulator shutdown */
- delete Y8950;
-}
-void y8950_reset_chip(void *chip)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- Y8950->ResetChip();
-}
-
-int y8950_write(void *chip, int a, int v)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- return Y8950->Write(a, v);
-}
-
-unsigned char y8950_read(void *chip, int a)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- return Y8950->Read(a);
-}
-int y8950_timer_over(void *chip, int c)
-{
- FM_OPL *Y8950 = (FM_OPL *)chip;
- return Y8950->TimerOver(c);
-}
-
-void y8950_set_timer_handler(void *chip, OPL_TIMERHANDLER timer_handler, device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetTimerHandler(timer_handler, device);
-}
-void y8950_set_irq_handler(void *chip,OPL_IRQHANDLER IRQHandler,device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetIRQHandler(IRQHandler, device);
-}
-void y8950_set_update_handler(void *chip,OPL_UPDATEHANDLER UpdateHandler,device_t *device)
-{
- reinterpret_cast<FM_OPL *>(chip)->SetUpdateHandler(UpdateHandler, device);
-}
-
-void y8950_set_delta_t_memory(void *chip, FM_READBYTE read_byte, FM_WRITEBYTE write_byte)
-{
- FM_OPL *OPL = (FM_OPL *)chip;
- OPL->deltat->read_byte = read_byte;
- OPL->deltat->write_byte = write_byte;
-}
-
-/*
-** Generate samples for one of the Y8950's
-**
-** 'which' is the virtual Y8950 number
-** '*buffer' is the output buffer pointer
-** 'length' is the number of samples that should be generated
-*/
-void y8950_update_one(void *chip, write_stream_view &buf)
-{
- int i;
- FM_OPL *OPL = (FM_OPL *)chip;
- uint8_t rhythm = OPL->rhythm&0x20;
- YM_DELTAT &DELTAT = *OPL->deltat;
-
- for( i=0; i < buf.samples() ; i++ )
- {
- int lt;
-
- OPL->output[0] = 0;
- OPL->output_deltat[0] = 0;
-
- OPL->advance_lfo();
-
- /* deltaT ADPCM */
- if( DELTAT.portstate&0x80 )
- DELTAT.ADPCM_CALC();
-
- /* FM part */
- OPL->CALC_CH(OPL->P_CH[0]);
- OPL->CALC_CH(OPL->P_CH[1]);
- OPL->CALC_CH(OPL->P_CH[2]);
- OPL->CALC_CH(OPL->P_CH[3]);
- OPL->CALC_CH(OPL->P_CH[4]);
- OPL->CALC_CH(OPL->P_CH[5]);
-
- if(!rhythm)
- {
- OPL->CALC_CH(OPL->P_CH[6]);
- OPL->CALC_CH(OPL->P_CH[7]);
- OPL->CALC_CH(OPL->P_CH[8]);
- }
- else /* Rhythm part */
- {
- OPL->CALC_RH();
- }
-
- lt = OPL->output[0] + (OPL->output_deltat[0]>>11);
-
- #ifdef SAVE_SAMPLE
- if (which==0)
- {
- SAVE_ALL_CHANNELS
- }
- #endif
-
- /* store to sound buffer */
- buf.put_int_clamp(i, lt, 32768 << FINAL_SH);
-
- OPL->advance();
- }
-
-}
-
-void y8950_set_port_handler(void *chip,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,device_t *device)
-{
- FM_OPL *OPL = (FM_OPL *)chip;
- OPL->porthandler_w = PortHandler_w;
- OPL->porthandler_r = PortHandler_r;
- OPL->port_param = device;
-}
-
-void y8950_set_keyboard_handler(void *chip,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,device_t *device)
-{
- FM_OPL *OPL = (FM_OPL *)chip;
- OPL->keyboardhandler_w = KeyboardHandler_w;
- OPL->keyboardhandler_r = KeyboardHandler_r;
- OPL->keyboard_param = device;
-}
-
-#endif