summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/bgfx/3rdparty/glslang/gtests/HexFloat.cpp
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/bgfx/3rdparty/glslang/gtests/HexFloat.cpp')
-rw-r--r--3rdparty/bgfx/3rdparty/glslang/gtests/HexFloat.cpp1231
1 files changed, 1231 insertions, 0 deletions
diff --git a/3rdparty/bgfx/3rdparty/glslang/gtests/HexFloat.cpp b/3rdparty/bgfx/3rdparty/glslang/gtests/HexFloat.cpp
new file mode 100644
index 00000000000..ddbee1f4641
--- /dev/null
+++ b/3rdparty/bgfx/3rdparty/glslang/gtests/HexFloat.cpp
@@ -0,0 +1,1231 @@
+// Copyright (c) 2015-2016 The Khronos Group Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <cfloat>
+#include <cmath>
+#include <cstdio>
+#include <sstream>
+#include <string>
+#include <tuple>
+
+#include <gmock/gmock.h>
+#include "SPIRV/hex_float.h"
+
+namespace {
+using ::testing::Eq;
+using spvutils::BitwiseCast;
+using spvutils::Float16;
+using spvutils::FloatProxy;
+using spvutils::HexFloat;
+using spvutils::ParseNormalFloat;
+
+// In this file "encode" means converting a number into a string,
+// and "decode" means converting a string into a number.
+
+using HexFloatTest =
+ ::testing::TestWithParam<std::pair<FloatProxy<float>, std::string>>;
+using DecodeHexFloatTest =
+ ::testing::TestWithParam<std::pair<std::string, FloatProxy<float>>>;
+using HexDoubleTest =
+ ::testing::TestWithParam<std::pair<FloatProxy<double>, std::string>>;
+using DecodeHexDoubleTest =
+ ::testing::TestWithParam<std::pair<std::string, FloatProxy<double>>>;
+
+// Hex-encodes a float value.
+template <typename T>
+std::string EncodeViaHexFloat(const T& value) {
+ std::stringstream ss;
+ ss << spvutils::HexFloat<T>(value);
+ return ss.str();
+}
+
+// The following two tests can't be DRY because they take different parameter
+// types.
+
+TEST_P(HexFloatTest, EncodeCorrectly) {
+ EXPECT_THAT(EncodeViaHexFloat(GetParam().first), Eq(GetParam().second));
+}
+
+TEST_P(HexDoubleTest, EncodeCorrectly) {
+ EXPECT_THAT(EncodeViaHexFloat(GetParam().first), Eq(GetParam().second));
+}
+
+// Decodes a hex-float string.
+template <typename T>
+FloatProxy<T> Decode(const std::string& str) {
+ spvutils::HexFloat<FloatProxy<T>> decoded(0.f);
+ EXPECT_TRUE((std::stringstream(str) >> decoded).eof());
+ return decoded.value();
+}
+
+TEST_P(HexFloatTest, DecodeCorrectly) {
+ EXPECT_THAT(Decode<float>(GetParam().second), Eq(GetParam().first));
+}
+
+TEST_P(HexDoubleTest, DecodeCorrectly) {
+ EXPECT_THAT(Decode<double>(GetParam().second), Eq(GetParam().first));
+}
+
+INSTANTIATE_TEST_CASE_P(
+ Float32Tests, HexFloatTest,
+ ::testing::ValuesIn(std::vector<std::pair<FloatProxy<float>, std::string>>({
+ {0.f, "0x0p+0"},
+ {1.f, "0x1p+0"},
+ {2.f, "0x1p+1"},
+ {3.f, "0x1.8p+1"},
+ {0.5f, "0x1p-1"},
+ {0.25f, "0x1p-2"},
+ {0.75f, "0x1.8p-1"},
+ {-0.f, "-0x0p+0"},
+ {-1.f, "-0x1p+0"},
+ {-0.5f, "-0x1p-1"},
+ {-0.25f, "-0x1p-2"},
+ {-0.75f, "-0x1.8p-1"},
+
+ // Larger numbers
+ {512.f, "0x1p+9"},
+ {-512.f, "-0x1p+9"},
+ {1024.f, "0x1p+10"},
+ {-1024.f, "-0x1p+10"},
+ {1024.f + 8.f, "0x1.02p+10"},
+ {-1024.f - 8.f, "-0x1.02p+10"},
+
+ // Small numbers
+ {1.0f / 512.f, "0x1p-9"},
+ {1.0f / -512.f, "-0x1p-9"},
+ {1.0f / 1024.f, "0x1p-10"},
+ {1.0f / -1024.f, "-0x1p-10"},
+ {1.0f / 1024.f + 1.0f / 8.f, "0x1.02p-3"},
+ {1.0f / -1024.f - 1.0f / 8.f, "-0x1.02p-3"},
+
+ // lowest non-denorm
+ {float(ldexp(1.0f, -126)), "0x1p-126"},
+ {float(ldexp(-1.0f, -126)), "-0x1p-126"},
+
+ // Denormalized values
+ {float(ldexp(1.0f, -127)), "0x1p-127"},
+ {float(ldexp(1.0f, -127) / 2.0f), "0x1p-128"},
+ {float(ldexp(1.0f, -127) / 4.0f), "0x1p-129"},
+ {float(ldexp(1.0f, -127) / 8.0f), "0x1p-130"},
+ {float(ldexp(-1.0f, -127)), "-0x1p-127"},
+ {float(ldexp(-1.0f, -127) / 2.0f), "-0x1p-128"},
+ {float(ldexp(-1.0f, -127) / 4.0f), "-0x1p-129"},
+ {float(ldexp(-1.0f, -127) / 8.0f), "-0x1p-130"},
+
+ {float(ldexp(1.0, -127) + (ldexp(1.0, -127) / 2.0f)), "0x1.8p-127"},
+ {float(ldexp(1.0, -127) / 2.0 + (ldexp(1.0, -127) / 4.0f)),
+ "0x1.8p-128"},
+
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float32NanTests, HexFloatTest,
+ ::testing::ValuesIn(std::vector<std::pair<FloatProxy<float>, std::string>>({
+ // Various NAN and INF cases
+ {uint32_t(0xFF800000), "-0x1p+128"}, // -inf
+ {uint32_t(0x7F800000), "0x1p+128"}, // inf
+ {uint32_t(0xFFC00000), "-0x1.8p+128"}, // -nan
+ {uint32_t(0xFF800100), "-0x1.0002p+128"}, // -nan
+ {uint32_t(0xFF800c00), "-0x1.0018p+128"}, // -nan
+ {uint32_t(0xFF80F000), "-0x1.01ep+128"}, // -nan
+ {uint32_t(0xFFFFFFFF), "-0x1.fffffep+128"}, // -nan
+ {uint32_t(0x7FC00000), "0x1.8p+128"}, // +nan
+ {uint32_t(0x7F800100), "0x1.0002p+128"}, // +nan
+ {uint32_t(0x7f800c00), "0x1.0018p+128"}, // +nan
+ {uint32_t(0x7F80F000), "0x1.01ep+128"}, // +nan
+ {uint32_t(0x7FFFFFFF), "0x1.fffffep+128"}, // +nan
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float64Tests, HexDoubleTest,
+ ::testing::ValuesIn(
+ std::vector<std::pair<FloatProxy<double>, std::string>>({
+ {0., "0x0p+0"},
+ {1., "0x1p+0"},
+ {2., "0x1p+1"},
+ {3., "0x1.8p+1"},
+ {0.5, "0x1p-1"},
+ {0.25, "0x1p-2"},
+ {0.75, "0x1.8p-1"},
+ {-0., "-0x0p+0"},
+ {-1., "-0x1p+0"},
+ {-0.5, "-0x1p-1"},
+ {-0.25, "-0x1p-2"},
+ {-0.75, "-0x1.8p-1"},
+
+ // Larger numbers
+ {512., "0x1p+9"},
+ {-512., "-0x1p+9"},
+ {1024., "0x1p+10"},
+ {-1024., "-0x1p+10"},
+ {1024. + 8., "0x1.02p+10"},
+ {-1024. - 8., "-0x1.02p+10"},
+
+ // Large outside the range of normal floats
+ {ldexp(1.0, 128), "0x1p+128"},
+ {ldexp(1.0, 129), "0x1p+129"},
+ {ldexp(-1.0, 128), "-0x1p+128"},
+ {ldexp(-1.0, 129), "-0x1p+129"},
+ {ldexp(1.0, 128) + ldexp(1.0, 90), "0x1.0000000004p+128"},
+ {ldexp(1.0, 129) + ldexp(1.0, 120), "0x1.008p+129"},
+ {ldexp(-1.0, 128) + ldexp(1.0, 90), "-0x1.fffffffff8p+127"},
+ {ldexp(-1.0, 129) + ldexp(1.0, 120), "-0x1.ffp+128"},
+
+ // Small numbers
+ {1.0 / 512., "0x1p-9"},
+ {1.0 / -512., "-0x1p-9"},
+ {1.0 / 1024., "0x1p-10"},
+ {1.0 / -1024., "-0x1p-10"},
+ {1.0 / 1024. + 1.0 / 8., "0x1.02p-3"},
+ {1.0 / -1024. - 1.0 / 8., "-0x1.02p-3"},
+
+ // Small outside the range of normal floats
+ {ldexp(1.0, -128), "0x1p-128"},
+ {ldexp(1.0, -129), "0x1p-129"},
+ {ldexp(-1.0, -128), "-0x1p-128"},
+ {ldexp(-1.0, -129), "-0x1p-129"},
+ {ldexp(1.0, -128) + ldexp(1.0, -90), "0x1.0000000004p-90"},
+ {ldexp(1.0, -129) + ldexp(1.0, -120), "0x1.008p-120"},
+ {ldexp(-1.0, -128) + ldexp(1.0, -90), "0x1.fffffffff8p-91"},
+ {ldexp(-1.0, -129) + ldexp(1.0, -120), "0x1.ffp-121"},
+
+ // lowest non-denorm
+ {ldexp(1.0, -1022), "0x1p-1022"},
+ {ldexp(-1.0, -1022), "-0x1p-1022"},
+
+ // Denormalized values
+ {ldexp(1.0, -1023), "0x1p-1023"},
+ {ldexp(1.0, -1023) / 2.0, "0x1p-1024"},
+ {ldexp(1.0, -1023) / 4.0, "0x1p-1025"},
+ {ldexp(1.0, -1023) / 8.0, "0x1p-1026"},
+ {ldexp(-1.0, -1024), "-0x1p-1024"},
+ {ldexp(-1.0, -1024) / 2.0, "-0x1p-1025"},
+ {ldexp(-1.0, -1024) / 4.0, "-0x1p-1026"},
+ {ldexp(-1.0, -1024) / 8.0, "-0x1p-1027"},
+
+ {ldexp(1.0, -1023) + (ldexp(1.0, -1023) / 2.0), "0x1.8p-1023"},
+ {ldexp(1.0, -1023) / 2.0 + (ldexp(1.0, -1023) / 4.0),
+ "0x1.8p-1024"},
+
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float64NanTests, HexDoubleTest,
+ ::testing::ValuesIn(std::vector<
+ std::pair<FloatProxy<double>, std::string>>({
+ // Various NAN and INF cases
+ {uint64_t(0xFFF0000000000000LL), "-0x1p+1024"}, //-inf
+ {uint64_t(0x7FF0000000000000LL), "0x1p+1024"}, //+inf
+ {uint64_t(0xFFF8000000000000LL), "-0x1.8p+1024"}, // -nan
+ {uint64_t(0xFFF0F00000000000LL), "-0x1.0fp+1024"}, // -nan
+ {uint64_t(0xFFF0000000000001LL), "-0x1.0000000000001p+1024"}, // -nan
+ {uint64_t(0xFFF0000300000000LL), "-0x1.00003p+1024"}, // -nan
+ {uint64_t(0xFFFFFFFFFFFFFFFFLL), "-0x1.fffffffffffffp+1024"}, // -nan
+ {uint64_t(0x7FF8000000000000LL), "0x1.8p+1024"}, // +nan
+ {uint64_t(0x7FF0F00000000000LL), "0x1.0fp+1024"}, // +nan
+ {uint64_t(0x7FF0000000000001LL), "0x1.0000000000001p+1024"}, // -nan
+ {uint64_t(0x7FF0000300000000LL), "0x1.00003p+1024"}, // -nan
+ {uint64_t(0x7FFFFFFFFFFFFFFFLL), "0x1.fffffffffffffp+1024"}, // -nan
+ })),);
+
+TEST(HexFloatStreamTest, OperatorLeftShiftPreservesFloatAndFill) {
+ std::stringstream s;
+ s << std::setw(4) << std::oct << std::setfill('x') << 8 << " "
+ << FloatProxy<float>(uint32_t(0xFF800100)) << " " << std::setw(4) << 9;
+ EXPECT_THAT(s.str(), Eq(std::string("xx10 -0x1.0002p+128 xx11")));
+}
+
+TEST(HexDoubleStreamTest, OperatorLeftShiftPreservesFloatAndFill) {
+ std::stringstream s;
+ s << std::setw(4) << std::oct << std::setfill('x') << 8 << " "
+ << FloatProxy<double>(uint64_t(0x7FF0F00000000000LL)) << " " << std::setw(4)
+ << 9;
+ EXPECT_THAT(s.str(), Eq(std::string("xx10 0x1.0fp+1024 xx11")));
+}
+
+TEST_P(DecodeHexFloatTest, DecodeCorrectly) {
+ EXPECT_THAT(Decode<float>(GetParam().first), Eq(GetParam().second));
+}
+
+TEST_P(DecodeHexDoubleTest, DecodeCorrectly) {
+ EXPECT_THAT(Decode<double>(GetParam().first), Eq(GetParam().second));
+}
+
+INSTANTIATE_TEST_CASE_P(
+ Float32DecodeTests, DecodeHexFloatTest,
+ ::testing::ValuesIn(std::vector<std::pair<std::string, FloatProxy<float>>>({
+ {"0x0p+000", 0.f},
+ {"0x0p0", 0.f},
+ {"0x0p-0", 0.f},
+
+ // flush to zero cases
+ {"0x1p-500", 0.f}, // Exponent underflows.
+ {"-0x1p-500", -0.f},
+ {"0x0.00000000001p-126", 0.f}, // Fraction causes underflow.
+ {"-0x0.0000000001p-127", -0.f},
+ {"-0x0.01p-142", -0.f}, // Fraction causes additional underflow.
+ {"0x0.01p-142", 0.f},
+
+ // Some floats that do not encode the same way as they decode.
+ {"0x2p+0", 2.f},
+ {"0xFFp+0", 255.f},
+ {"0x0.8p+0", 0.5f},
+ {"0x0.4p+0", 0.25f},
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float32DecodeInfTests, DecodeHexFloatTest,
+ ::testing::ValuesIn(std::vector<std::pair<std::string, FloatProxy<float>>>({
+ // inf cases
+ {"-0x1p+128", uint32_t(0xFF800000)}, // -inf
+ {"0x32p+127", uint32_t(0x7F800000)}, // inf
+ {"0x32p+500", uint32_t(0x7F800000)}, // inf
+ {"-0x32p+127", uint32_t(0xFF800000)}, // -inf
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float64DecodeTests, DecodeHexDoubleTest,
+ ::testing::ValuesIn(
+ std::vector<std::pair<std::string, FloatProxy<double>>>({
+ {"0x0p+000", 0.},
+ {"0x0p0", 0.},
+ {"0x0p-0", 0.},
+
+ // flush to zero cases
+ {"0x1p-5000", 0.}, // Exponent underflows.
+ {"-0x1p-5000", -0.},
+ {"0x0.0000000000000001p-1023", 0.}, // Fraction causes underflow.
+ {"-0x0.000000000000001p-1024", -0.},
+ {"-0x0.01p-1090", -0.f}, // Fraction causes additional underflow.
+ {"0x0.01p-1090", 0.},
+
+ // Some floats that do not encode the same way as they decode.
+ {"0x2p+0", 2.},
+ {"0xFFp+0", 255.},
+ {"0x0.8p+0", 0.5},
+ {"0x0.4p+0", 0.25},
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float64DecodeInfTests, DecodeHexDoubleTest,
+ ::testing::ValuesIn(
+ std::vector<std::pair<std::string, FloatProxy<double>>>({
+ // inf cases
+ {"-0x1p+1024", uint64_t(0xFFF0000000000000)}, // -inf
+ {"0x32p+1023", uint64_t(0x7FF0000000000000)}, // inf
+ {"0x32p+5000", uint64_t(0x7FF0000000000000)}, // inf
+ {"-0x32p+1023", uint64_t(0xFFF0000000000000)}, // -inf
+ })),);
+
+TEST(FloatProxy, ValidConversion) {
+ EXPECT_THAT(FloatProxy<float>(1.f).getAsFloat(), Eq(1.0f));
+ EXPECT_THAT(FloatProxy<float>(32.f).getAsFloat(), Eq(32.0f));
+ EXPECT_THAT(FloatProxy<float>(-1.f).getAsFloat(), Eq(-1.0f));
+ EXPECT_THAT(FloatProxy<float>(0.f).getAsFloat(), Eq(0.0f));
+ EXPECT_THAT(FloatProxy<float>(-0.f).getAsFloat(), Eq(-0.0f));
+ EXPECT_THAT(FloatProxy<float>(1.2e32f).getAsFloat(), Eq(1.2e32f));
+
+ EXPECT_TRUE(std::isinf(FloatProxy<float>(uint32_t(0xFF800000)).getAsFloat()));
+ EXPECT_TRUE(std::isinf(FloatProxy<float>(uint32_t(0x7F800000)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFFC00000)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFF800100)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFF800c00)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFF80F000)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFFFFFFFF)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7FC00000)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7F800100)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7f800c00)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7F80F000)).getAsFloat()));
+ EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7FFFFFFF)).getAsFloat()));
+
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF800000)).data(), Eq(0xFF800000u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0x7F800000)).data(), Eq(0x7F800000u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0xFFC00000)).data(), Eq(0xFFC00000u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF800100)).data(), Eq(0xFF800100u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF800c00)).data(), Eq(0xFF800c00u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF80F000)).data(), Eq(0xFF80F000u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0xFFFFFFFF)).data(), Eq(0xFFFFFFFFu));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0x7FC00000)).data(), Eq(0x7FC00000u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0x7F800100)).data(), Eq(0x7F800100u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0x7f800c00)).data(), Eq(0x7f800c00u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0x7F80F000)).data(), Eq(0x7F80F000u));
+ EXPECT_THAT(FloatProxy<float>(uint32_t(0x7FFFFFFF)).data(), Eq(0x7FFFFFFFu));
+}
+
+TEST(FloatProxy, Nan) {
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFFC00000)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFF800100)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFF800c00)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFF80F000)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFFFFFFFF)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7FC00000)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7F800100)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7f800c00)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7F80F000)).isNan());
+ EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7FFFFFFF)).isNan());
+}
+
+TEST(FloatProxy, Negation) {
+ EXPECT_THAT((-FloatProxy<float>(1.f)).getAsFloat(), Eq(-1.0f));
+ EXPECT_THAT((-FloatProxy<float>(0.f)).getAsFloat(), Eq(-0.0f));
+
+ EXPECT_THAT((-FloatProxy<float>(-1.f)).getAsFloat(), Eq(1.0f));
+ EXPECT_THAT((-FloatProxy<float>(-0.f)).getAsFloat(), Eq(0.0f));
+
+ EXPECT_THAT((-FloatProxy<float>(32.f)).getAsFloat(), Eq(-32.0f));
+ EXPECT_THAT((-FloatProxy<float>(-32.f)).getAsFloat(), Eq(32.0f));
+
+ EXPECT_THAT((-FloatProxy<float>(1.2e32f)).getAsFloat(), Eq(-1.2e32f));
+ EXPECT_THAT((-FloatProxy<float>(-1.2e32f)).getAsFloat(), Eq(1.2e32f));
+
+ EXPECT_THAT(
+ (-FloatProxy<float>(std::numeric_limits<float>::infinity())).getAsFloat(),
+ Eq(-std::numeric_limits<float>::infinity()));
+ EXPECT_THAT((-FloatProxy<float>(-std::numeric_limits<float>::infinity()))
+ .getAsFloat(),
+ Eq(std::numeric_limits<float>::infinity()));
+}
+
+// Test conversion of FloatProxy values to strings.
+//
+// In previous cases, we always wrapped the FloatProxy value in a HexFloat
+// before conversion to a string. In the following cases, the FloatProxy
+// decides for itself whether to print as a regular number or as a hex float.
+
+using FloatProxyFloatTest =
+ ::testing::TestWithParam<std::pair<FloatProxy<float>, std::string>>;
+using FloatProxyDoubleTest =
+ ::testing::TestWithParam<std::pair<FloatProxy<double>, std::string>>;
+
+// Converts a float value to a string via a FloatProxy.
+template <typename T>
+std::string EncodeViaFloatProxy(const T& value) {
+ std::stringstream ss;
+ ss << value;
+ return ss.str();
+}
+
+// Converts a floating point string so that the exponent prefix
+// is 'e', and the exponent value does not have leading zeros.
+// The Microsoft runtime library likes to write things like "2.5E+010".
+// Convert that to "2.5e+10".
+// We don't care what happens to strings that are not floating point
+// strings.
+std::string NormalizeExponentInFloatString(std::string in) {
+ std::string result;
+ // Reserve one spot for the terminating null, even when the sscanf fails.
+ std::vector<char> prefix(in.size() + 1);
+ char e;
+ char plus_or_minus;
+ int exponent; // in base 10
+ if ((4 == std::sscanf(in.c_str(), "%[-+.0123456789]%c%c%d", prefix.data(), &e,
+ &plus_or_minus, &exponent)) &&
+ (e == 'e' || e == 'E') &&
+ (plus_or_minus == '-' || plus_or_minus == '+')) {
+ // It looks like a floating point value with exponent.
+ std::stringstream out;
+ out << prefix.data() << 'e' << plus_or_minus << exponent;
+ result = out.str();
+ } else {
+ result = in;
+ }
+ return result;
+}
+
+TEST(NormalizeFloat, Sample) {
+ EXPECT_THAT(NormalizeExponentInFloatString(""), Eq(""));
+ EXPECT_THAT(NormalizeExponentInFloatString("1e-12"), Eq("1e-12"));
+ EXPECT_THAT(NormalizeExponentInFloatString("1E+14"), Eq("1e+14"));
+ EXPECT_THAT(NormalizeExponentInFloatString("1e-0012"), Eq("1e-12"));
+ EXPECT_THAT(NormalizeExponentInFloatString("1.263E+014"), Eq("1.263e+14"));
+}
+
+// The following two tests can't be DRY because they take different parameter
+// types.
+TEST_P(FloatProxyFloatTest, EncodeCorrectly) {
+ EXPECT_THAT(
+ NormalizeExponentInFloatString(EncodeViaFloatProxy(GetParam().first)),
+ Eq(GetParam().second));
+}
+
+TEST_P(FloatProxyDoubleTest, EncodeCorrectly) {
+ EXPECT_THAT(
+ NormalizeExponentInFloatString(EncodeViaFloatProxy(GetParam().first)),
+ Eq(GetParam().second));
+}
+
+INSTANTIATE_TEST_CASE_P(
+ Float32Tests, FloatProxyFloatTest,
+ ::testing::ValuesIn(std::vector<std::pair<FloatProxy<float>, std::string>>({
+ // Zero
+ {0.f, "0"},
+ // Normal numbers
+ {1.f, "1"},
+ {-0.25f, "-0.25"},
+ {1000.0f, "1000"},
+
+ // Still normal numbers, but with large magnitude exponents.
+ {float(ldexp(1.f, 126)), "8.50706e+37"},
+ {float(ldexp(-1.f, -126)), "-1.17549e-38"},
+
+ // denormalized values are printed as hex floats.
+ {float(ldexp(1.0f, -127)), "0x1p-127"},
+ {float(ldexp(1.5f, -128)), "0x1.8p-128"},
+ {float(ldexp(1.25, -129)), "0x1.4p-129"},
+ {float(ldexp(1.125, -130)), "0x1.2p-130"},
+ {float(ldexp(-1.0f, -127)), "-0x1p-127"},
+ {float(ldexp(-1.0f, -128)), "-0x1p-128"},
+ {float(ldexp(-1.0f, -129)), "-0x1p-129"},
+ {float(ldexp(-1.5f, -130)), "-0x1.8p-130"},
+
+ // NaNs
+ {FloatProxy<float>(uint32_t(0xFFC00000)), "-0x1.8p+128"},
+ {FloatProxy<float>(uint32_t(0xFF800100)), "-0x1.0002p+128"},
+
+ {std::numeric_limits<float>::infinity(), "0x1p+128"},
+ {-std::numeric_limits<float>::infinity(), "-0x1p+128"},
+ })),);
+
+INSTANTIATE_TEST_CASE_P(
+ Float64Tests, FloatProxyDoubleTest,
+ ::testing::ValuesIn(
+ std::vector<std::pair<FloatProxy<double>, std::string>>({
+ {0., "0"},
+ {1., "1"},
+ {-0.25, "-0.25"},
+ {1000.0, "1000"},
+
+ // Large outside the range of normal floats
+ {ldexp(1.0, 128), "3.40282366920938e+38"},
+ {ldexp(1.5, 129), "1.02084710076282e+39"},
+ {ldexp(-1.0, 128), "-3.40282366920938e+38"},
+ {ldexp(-1.5, 129), "-1.02084710076282e+39"},
+
+ // Small outside the range of normal floats
+ {ldexp(1.5, -129), "2.20405190779179e-39"},
+ {ldexp(-1.5, -129), "-2.20405190779179e-39"},
+
+ // lowest non-denorm
+ {ldexp(1.0, -1022), "2.2250738585072e-308"},
+ {ldexp(-1.0, -1022), "-2.2250738585072e-308"},
+
+ // Denormalized values
+ {ldexp(1.125, -1023), "0x1.2p-1023"},
+ {ldexp(-1.375, -1024), "-0x1.6p-1024"},
+
+ // NaNs
+ {uint64_t(0x7FF8000000000000LL), "0x1.8p+1024"},
+ {uint64_t(0xFFF0F00000000000LL), "-0x1.0fp+1024"},
+
+ // Infinity
+ {std::numeric_limits<double>::infinity(), "0x1p+1024"},
+ {-std::numeric_limits<double>::infinity(), "-0x1p+1024"},
+
+ })),);
+
+// double is used so that unbiased_exponent can be used with the output
+// of ldexp directly.
+int32_t unbiased_exponent(double f) {
+ return spvutils::HexFloat<spvutils::FloatProxy<float>>(
+ static_cast<float>(f)).getUnbiasedNormalizedExponent();
+}
+
+int16_t unbiased_half_exponent(uint16_t f) {
+ return spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>(f)
+ .getUnbiasedNormalizedExponent();
+}
+
+TEST(HexFloatOperationTest, UnbiasedExponent) {
+ // Float cases
+ EXPECT_EQ(0, unbiased_exponent(ldexp(1.0f, 0)));
+ EXPECT_EQ(-32, unbiased_exponent(ldexp(1.0f, -32)));
+ EXPECT_EQ(42, unbiased_exponent(ldexp(1.0f, 42)));
+ EXPECT_EQ(125, unbiased_exponent(ldexp(1.0f, 125)));
+ // Saturates to 128
+ EXPECT_EQ(128, unbiased_exponent(ldexp(1.0f, 256)));
+
+ EXPECT_EQ(-100, unbiased_exponent(ldexp(1.0f, -100)));
+ EXPECT_EQ(-127, unbiased_exponent(ldexp(1.0f, -127))); // First denorm
+ EXPECT_EQ(-128, unbiased_exponent(ldexp(1.0f, -128)));
+ EXPECT_EQ(-129, unbiased_exponent(ldexp(1.0f, -129)));
+ EXPECT_EQ(-140, unbiased_exponent(ldexp(1.0f, -140)));
+ // Smallest representable number
+ EXPECT_EQ(-126 - 23, unbiased_exponent(ldexp(1.0f, -126 - 23)));
+ // Should get rounded to 0 first.
+ EXPECT_EQ(0, unbiased_exponent(ldexp(1.0f, -127 - 23)));
+
+ // Float16 cases
+ // The exponent is represented in the bits 0x7C00
+ // The offset is -15
+ EXPECT_EQ(0, unbiased_half_exponent(0x3C00));
+ EXPECT_EQ(3, unbiased_half_exponent(0x4800));
+ EXPECT_EQ(-1, unbiased_half_exponent(0x3800));
+ EXPECT_EQ(-14, unbiased_half_exponent(0x0400));
+ EXPECT_EQ(16, unbiased_half_exponent(0x7C00));
+ EXPECT_EQ(10, unbiased_half_exponent(0x6400));
+
+ // Smallest representable number
+ EXPECT_EQ(-24, unbiased_half_exponent(0x0001));
+}
+
+// Creates a float that is the sum of 1/(2 ^ fractions[i]) for i in factions
+float float_fractions(const std::vector<uint32_t>& fractions) {
+ float f = 0;
+ for(int32_t i: fractions) {
+ f += std::ldexp(1.0f, -i);
+ }
+ return f;
+}
+
+// Returns the normalized significand of a HexFloat<FloatProxy<float>>
+// that was created by calling float_fractions with the input fractions,
+// raised to the power of exp.
+uint32_t normalized_significand(const std::vector<uint32_t>& fractions, uint32_t exp) {
+ return spvutils::HexFloat<spvutils::FloatProxy<float>>(
+ static_cast<float>(ldexp(float_fractions(fractions), exp)))
+ .getNormalizedSignificand();
+}
+
+// Sets the bits from MSB to LSB of the significand part of a float.
+// For example 0 would set the bit 23 (counting from LSB to MSB),
+// and 1 would set the 22nd bit.
+uint32_t bits_set(const std::vector<uint32_t>& bits) {
+ const uint32_t top_bit = 1u << 22u;
+ uint32_t val= 0;
+ for(uint32_t i: bits) {
+ val |= top_bit >> i;
+ }
+ return val;
+}
+
+// The same as bits_set but for a Float16 value instead of 32-bit floating
+// point.
+uint16_t half_bits_set(const std::vector<uint32_t>& bits) {
+ const uint32_t top_bit = 1u << 9u;
+ uint32_t val= 0;
+ for(uint32_t i: bits) {
+ val |= top_bit >> i;
+ }
+ return static_cast<uint16_t>(val);
+}
+
+TEST(HexFloatOperationTest, NormalizedSignificand) {
+ // For normalized numbers (the following) it should be a simple matter
+ // of getting rid of the top implicit bit
+ EXPECT_EQ(bits_set({}), normalized_significand({0}, 0));
+ EXPECT_EQ(bits_set({0}), normalized_significand({0, 1}, 0));
+ EXPECT_EQ(bits_set({0, 1}), normalized_significand({0, 1, 2}, 0));
+ EXPECT_EQ(bits_set({1}), normalized_significand({0, 2}, 0));
+ EXPECT_EQ(bits_set({1}), normalized_significand({0, 2}, 32));
+ EXPECT_EQ(bits_set({1}), normalized_significand({0, 2}, 126));
+
+ // For denormalized numbers we expect the normalized significand to
+ // shift as if it were normalized. This means, in practice that the
+ // top_most set bit will be cut off. Looks very similar to above (on purpose)
+ EXPECT_EQ(bits_set({}), normalized_significand({0}, -127));
+ EXPECT_EQ(bits_set({3}), normalized_significand({0, 4}, -128));
+ EXPECT_EQ(bits_set({3}), normalized_significand({0, 4}, -127));
+ EXPECT_EQ(bits_set({}), normalized_significand({22}, -127));
+ EXPECT_EQ(bits_set({0}), normalized_significand({21, 22}, -127));
+}
+
+// Returns the 32-bit floating point value created by
+// calling setFromSignUnbiasedExponentAndNormalizedSignificand
+// on a HexFloat<FloatProxy<float>>
+float set_from_sign(bool negative, int32_t unbiased_exponent,
+ uint32_t significand, bool round_denorm_up) {
+ spvutils::HexFloat<spvutils::FloatProxy<float>> f(0.f);
+ f.setFromSignUnbiasedExponentAndNormalizedSignificand(
+ negative, unbiased_exponent, significand, round_denorm_up);
+ return f.value().getAsFloat();
+}
+
+TEST(HexFloatOperationTests,
+ SetFromSignUnbiasedExponentAndNormalizedSignificand) {
+
+ EXPECT_EQ(1.f, set_from_sign(false, 0, 0, false));
+
+ // Tests insertion of various denormalized numbers with and without round up.
+ EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), set_from_sign(false, -149, 0, false));
+ EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), set_from_sign(false, -149, 0, true));
+ EXPECT_EQ(0.f, set_from_sign(false, -150, 1, false));
+ EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), set_from_sign(false, -150, 1, true));
+
+ EXPECT_EQ(ldexp(1.0f, -127), set_from_sign(false, -127, 0, false));
+ EXPECT_EQ(ldexp(1.0f, -128), set_from_sign(false, -128, 0, false));
+ EXPECT_EQ(float_fractions({0, 1, 2, 5}),
+ set_from_sign(false, 0, bits_set({0, 1, 4}), false));
+ EXPECT_EQ(ldexp(float_fractions({0, 1, 2, 5}), -32),
+ set_from_sign(false, -32, bits_set({0, 1, 4}), false));
+ EXPECT_EQ(ldexp(float_fractions({0, 1, 2, 5}), -128),
+ set_from_sign(false, -128, bits_set({0, 1, 4}), false));
+
+ // The negative cases from above.
+ EXPECT_EQ(-1.f, set_from_sign(true, 0, 0, false));
+ EXPECT_EQ(-ldexp(1.0, -127), set_from_sign(true, -127, 0, false));
+ EXPECT_EQ(-ldexp(1.0, -128), set_from_sign(true, -128, 0, false));
+ EXPECT_EQ(-float_fractions({0, 1, 2, 5}),
+ set_from_sign(true, 0, bits_set({0, 1, 4}), false));
+ EXPECT_EQ(-ldexp(float_fractions({0, 1, 2, 5}), -32),
+ set_from_sign(true, -32, bits_set({0, 1, 4}), false));
+ EXPECT_EQ(-ldexp(float_fractions({0, 1, 2, 5}), -128),
+ set_from_sign(true, -128, bits_set({0, 1, 4}), false));
+}
+
+TEST(HexFloatOperationTests, NonRounding) {
+ // Rounding from 32-bit hex-float to 32-bit hex-float should be trivial,
+ // except in the denorm case which is a bit more complex.
+ using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
+ bool carry_bit = false;
+
+ spvutils::round_direction rounding[] = {
+ spvutils::kRoundToZero,
+ spvutils::kRoundToNearestEven,
+ spvutils::kRoundToPositiveInfinity,
+ spvutils::kRoundToNegativeInfinity};
+
+ // Everything fits, so this should be straight-forward
+ for (spvutils::round_direction round : rounding) {
+ EXPECT_EQ(bits_set({}), HF(0.f).getRoundedNormalizedSignificand<HF>(
+ round, &carry_bit));
+ EXPECT_FALSE(carry_bit);
+
+ EXPECT_EQ(bits_set({0}),
+ HF(float_fractions({0, 1}))
+ .getRoundedNormalizedSignificand<HF>(round, &carry_bit));
+ EXPECT_FALSE(carry_bit);
+
+ EXPECT_EQ(bits_set({1, 3}),
+ HF(float_fractions({0, 2, 4}))
+ .getRoundedNormalizedSignificand<HF>(round, &carry_bit));
+ EXPECT_FALSE(carry_bit);
+
+ EXPECT_EQ(
+ bits_set({0, 1, 4}),
+ HF(static_cast<float>(-ldexp(float_fractions({0, 1, 2, 5}), -128)))
+ .getRoundedNormalizedSignificand<HF>(round, &carry_bit));
+ EXPECT_FALSE(carry_bit);
+
+ EXPECT_EQ(
+ bits_set({0, 1, 4, 22}),
+ HF(static_cast<float>(float_fractions({0, 1, 2, 5, 23})))
+ .getRoundedNormalizedSignificand<HF>(round, &carry_bit));
+ EXPECT_FALSE(carry_bit);
+ }
+}
+
+struct RoundSignificandCase {
+ float source_float;
+ std::pair<int16_t, bool> expected_results;
+ spvutils::round_direction round;
+};
+
+using HexFloatRoundTest =
+ ::testing::TestWithParam<RoundSignificandCase>;
+
+TEST_P(HexFloatRoundTest, RoundDownToFP16) {
+ using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
+ using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
+
+ HF input_value(GetParam().source_float);
+ bool carry_bit = false;
+ EXPECT_EQ(GetParam().expected_results.first,
+ input_value.getRoundedNormalizedSignificand<HF16>(
+ GetParam().round, &carry_bit));
+ EXPECT_EQ(carry_bit, GetParam().expected_results.second);
+}
+
+// clang-format off
+INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatRoundTest,
+ ::testing::ValuesIn(std::vector<RoundSignificandCase>(
+ {
+ {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToZero},
+ {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNearestEven},
+ {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToPositiveInfinity},
+ {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNegativeInfinity},
+ {float_fractions({0, 1}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
+
+ {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
+ {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
+ {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
+ {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNearestEven},
+
+ {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToZero},
+ {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToPositiveInfinity},
+ {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity},
+ {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToNearestEven},
+
+ {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
+ {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
+ {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
+ {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
+
+ {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
+ {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToPositiveInfinity},
+ {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity},
+ {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
+
+ {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
+ {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
+ {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
+ {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
+
+ // Carries
+ {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToZero},
+ {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToPositiveInfinity},
+ {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToNegativeInfinity},
+ {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToNearestEven},
+
+ // Cases where original number was denorm. Note: this should have no effect
+ // the number is pre-normalized.
+ {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero},
+ {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity},
+ {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity},
+ {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven},
+ })),);
+// clang-format on
+
+struct UpCastSignificandCase {
+ uint16_t source_half;
+ uint32_t expected_result;
+};
+
+using HexFloatRoundUpSignificandTest =
+ ::testing::TestWithParam<UpCastSignificandCase>;
+TEST_P(HexFloatRoundUpSignificandTest, Widening) {
+ using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
+ using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
+ bool carry_bit = false;
+
+ spvutils::round_direction rounding[] = {
+ spvutils::kRoundToZero,
+ spvutils::kRoundToNearestEven,
+ spvutils::kRoundToPositiveInfinity,
+ spvutils::kRoundToNegativeInfinity};
+
+ // Everything fits, so everything should just be bit-shifts.
+ for (spvutils::round_direction round : rounding) {
+ carry_bit = false;
+ HF16 input_value(GetParam().source_half);
+ EXPECT_EQ(
+ GetParam().expected_result,
+ input_value.getRoundedNormalizedSignificand<HF>(round, &carry_bit))
+ << std::hex << "0x"
+ << input_value.getRoundedNormalizedSignificand<HF>(round, &carry_bit)
+ << " 0x" << GetParam().expected_result;
+ EXPECT_FALSE(carry_bit);
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(F16toF32, HexFloatRoundUpSignificandTest,
+ // 0xFC00 of the source 16-bit hex value cover the sign and the exponent.
+ // They are ignored for this test.
+ ::testing::ValuesIn(std::vector<UpCastSignificandCase>(
+ {
+ {0x3F00, 0x600000},
+ {0x0F00, 0x600000},
+ {0x0F01, 0x602000},
+ {0x0FFF, 0x7FE000},
+ })),);
+
+struct DownCastTest {
+ float source_float;
+ uint16_t expected_half;
+ std::vector<spvutils::round_direction> directions;
+};
+
+std::string get_round_text(spvutils::round_direction direction) {
+#define CASE(round_direction) \
+ case round_direction: \
+ return #round_direction
+
+ switch (direction) {
+ CASE(spvutils::kRoundToZero);
+ CASE(spvutils::kRoundToPositiveInfinity);
+ CASE(spvutils::kRoundToNegativeInfinity);
+ CASE(spvutils::kRoundToNearestEven);
+ }
+#undef CASE
+ return "";
+}
+
+using HexFloatFP32To16Tests = ::testing::TestWithParam<DownCastTest>;
+
+TEST_P(HexFloatFP32To16Tests, NarrowingCasts) {
+ using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
+ using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
+ HF f(GetParam().source_float);
+ for (auto round : GetParam().directions) {
+ HF16 half(0);
+ f.castTo(half, round);
+ EXPECT_EQ(GetParam().expected_half, half.value().getAsFloat().get_value())
+ << get_round_text(round) << " " << std::hex
+ << spvutils::BitwiseCast<uint32_t>(GetParam().source_float)
+ << " cast to: " << half.value().getAsFloat().get_value();
+ }
+}
+
+const uint16_t positive_infinity = 0x7C00;
+const uint16_t negative_infinity = 0xFC00;
+
+INSTANTIATE_TEST_CASE_P(F32ToF16, HexFloatFP32To16Tests,
+ ::testing::ValuesIn(std::vector<DownCastTest>(
+ {
+ // Exactly representable as half.
+ {0.f, 0x0, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {-0.f, 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {1.0f, 0x3C00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {-1.0f, 0xBC00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+
+ {float_fractions({0, 1, 10}) , 0x3E01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {-float_fractions({0, 1, 10}) , 0xBE01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)), 0x4A01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)), 0xCA01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+
+
+ // Underflow
+ {static_cast<float>(ldexp(1.0f, -25)), 0x0, {spvutils::kRoundToZero, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(ldexp(1.0f, -25)), 0x1, {spvutils::kRoundToPositiveInfinity}},
+ {static_cast<float>(-ldexp(1.0f, -25)), 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(-ldexp(1.0f, -25)), 0x8001, {spvutils::kRoundToNegativeInfinity}},
+ {static_cast<float>(ldexp(1.0f, -24)), 0x1, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+
+ // Overflow
+ {static_cast<float>(ldexp(1.0f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(ldexp(1.0f, 18)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(ldexp(1.3f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(-ldexp(1.0f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(-ldexp(1.0f, 18)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {static_cast<float>(-ldexp(1.3f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+
+ // Transfer of Infinities
+ {std::numeric_limits<float>::infinity(), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+ {-std::numeric_limits<float>::infinity(), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}},
+
+ // Nans are below because we cannot test for equality.
+ })),);
+
+struct UpCastCase{
+ uint16_t source_half;
+ float expected_float;
+};
+
+using HexFloatFP16To32Tests = ::testing::TestWithParam<UpCastCase>;
+TEST_P(HexFloatFP16To32Tests, WideningCasts) {
+ using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
+ using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
+ HF16 f(GetParam().source_half);
+
+ spvutils::round_direction rounding[] = {
+ spvutils::kRoundToZero,
+ spvutils::kRoundToNearestEven,
+ spvutils::kRoundToPositiveInfinity,
+ spvutils::kRoundToNegativeInfinity};
+
+ // Everything fits, so everything should just be bit-shifts.
+ for (spvutils::round_direction round : rounding) {
+ HF flt(0.f);
+ f.castTo(flt, round);
+ EXPECT_EQ(GetParam().expected_float, flt.value().getAsFloat())
+ << get_round_text(round) << " " << std::hex
+ << spvutils::BitwiseCast<uint16_t>(GetParam().source_half)
+ << " cast to: " << flt.value().getAsFloat();
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(F16ToF32, HexFloatFP16To32Tests,
+ ::testing::ValuesIn(std::vector<UpCastCase>(
+ {
+ {0x0000, 0.f},
+ {0x8000, -0.f},
+ {0x3C00, 1.0f},
+ {0xBC00, -1.0f},
+ {0x3F00, float_fractions({0, 1, 2})},
+ {0xBF00, -float_fractions({0, 1, 2})},
+ {0x3F01, float_fractions({0, 1, 2, 10})},
+ {0xBF01, -float_fractions({0, 1, 2, 10})},
+
+ // denorm
+ {0x0001, static_cast<float>(ldexp(1.0, -24))},
+ {0x0002, static_cast<float>(ldexp(1.0, -23))},
+ {0x8001, static_cast<float>(-ldexp(1.0, -24))},
+ {0x8011, static_cast<float>(-ldexp(1.0, -20) + -ldexp(1.0, -24))},
+
+ // inf
+ {0x7C00, std::numeric_limits<float>::infinity()},
+ {0xFC00, -std::numeric_limits<float>::infinity()},
+ })),);
+
+TEST(HexFloatOperationTests, NanTests) {
+ using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>;
+ using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>;
+ spvutils::round_direction rounding[] = {
+ spvutils::kRoundToZero,
+ spvutils::kRoundToNearestEven,
+ spvutils::kRoundToPositiveInfinity,
+ spvutils::kRoundToNegativeInfinity};
+
+ // Everything fits, so everything should just be bit-shifts.
+ for (spvutils::round_direction round : rounding) {
+ HF16 f16(0);
+ HF f(0.f);
+ HF(std::numeric_limits<float>::quiet_NaN()).castTo(f16, round);
+ EXPECT_TRUE(f16.value().isNan());
+ HF(std::numeric_limits<float>::signaling_NaN()).castTo(f16, round);
+ EXPECT_TRUE(f16.value().isNan());
+
+ HF16(0x7C01).castTo(f, round);
+ EXPECT_TRUE(f.value().isNan());
+ HF16(0x7C11).castTo(f, round);
+ EXPECT_TRUE(f.value().isNan());
+ HF16(0xFC01).castTo(f, round);
+ EXPECT_TRUE(f.value().isNan());
+ HF16(0x7C10).castTo(f, round);
+ EXPECT_TRUE(f.value().isNan());
+ HF16(0xFF00).castTo(f, round);
+ EXPECT_TRUE(f.value().isNan());
+ }
+}
+
+// A test case for parsing good and bad HexFloat<FloatProxy<T>> literals.
+template <typename T>
+struct FloatParseCase {
+ std::string literal;
+ bool negate_value;
+ bool expect_success;
+ HexFloat<FloatProxy<T>> expected_value;
+};
+
+using ParseNormalFloatTest = ::testing::TestWithParam<FloatParseCase<float>>;
+
+TEST_P(ParseNormalFloatTest, Samples) {
+ std::stringstream input(GetParam().literal);
+ HexFloat<FloatProxy<float>> parsed_value(0.0f);
+ ParseNormalFloat(input, GetParam().negate_value, parsed_value);
+ EXPECT_NE(GetParam().expect_success, input.fail())
+ << " literal: " << GetParam().literal
+ << " negate: " << GetParam().negate_value;
+ if (GetParam().expect_success) {
+ EXPECT_THAT(parsed_value.value(), Eq(GetParam().expected_value.value()))
+ << " literal: " << GetParam().literal
+ << " negate: " << GetParam().negate_value;
+ }
+}
+
+// Returns a FloatParseCase with expected failure.
+template <typename T>
+FloatParseCase<T> BadFloatParseCase(std::string literal, bool negate_value,
+ T expected_value) {
+ HexFloat<FloatProxy<T>> proxy_expected_value(expected_value);
+ return FloatParseCase<T>{literal, negate_value, false, proxy_expected_value};
+}
+
+// Returns a FloatParseCase that should successfully parse to a given value.
+template <typename T>
+FloatParseCase<T> GoodFloatParseCase(std::string literal, bool negate_value,
+ T expected_value) {
+ HexFloat<FloatProxy<T>> proxy_expected_value(expected_value);
+ return FloatParseCase<T>{literal, negate_value, true, proxy_expected_value};
+}
+
+INSTANTIATE_TEST_CASE_P(
+ FloatParse, ParseNormalFloatTest,
+ ::testing::ValuesIn(std::vector<FloatParseCase<float>>{
+ // Failing cases due to trivially incorrect syntax.
+ BadFloatParseCase("abc", false, 0.0f),
+ BadFloatParseCase("abc", true, 0.0f),
+
+ // Valid cases.
+ GoodFloatParseCase("0", false, 0.0f),
+ GoodFloatParseCase("0.0", false, 0.0f),
+ GoodFloatParseCase("-0.0", false, -0.0f),
+ GoodFloatParseCase("2.0", false, 2.0f),
+ GoodFloatParseCase("-2.0", false, -2.0f),
+ GoodFloatParseCase("+2.0", false, 2.0f),
+ // Cases with negate_value being true.
+ GoodFloatParseCase("0.0", true, -0.0f),
+ GoodFloatParseCase("2.0", true, -2.0f),
+
+ // When negate_value is true, we should not accept a
+ // leading minus or plus.
+ BadFloatParseCase("-0.0", true, 0.0f),
+ BadFloatParseCase("-2.0", true, 0.0f),
+ BadFloatParseCase("+0.0", true, 0.0f),
+ BadFloatParseCase("+2.0", true, 0.0f),
+
+ // Overflow is an error for 32-bit float parsing.
+ BadFloatParseCase("1e40", false, FLT_MAX),
+ BadFloatParseCase("1e40", true, -FLT_MAX),
+ BadFloatParseCase("-1e40", false, -FLT_MAX),
+ // We can't have -1e40 and negate_value == true since
+ // that represents an original case of "--1e40" which
+ // is invalid.
+ }),);
+
+using ParseNormalFloat16Test =
+ ::testing::TestWithParam<FloatParseCase<Float16>>;
+
+TEST_P(ParseNormalFloat16Test, Samples) {
+ std::stringstream input(GetParam().literal);
+ HexFloat<FloatProxy<Float16>> parsed_value(0);
+ ParseNormalFloat(input, GetParam().negate_value, parsed_value);
+ EXPECT_NE(GetParam().expect_success, input.fail())
+ << " literal: " << GetParam().literal
+ << " negate: " << GetParam().negate_value;
+ if (GetParam().expect_success) {
+ EXPECT_THAT(parsed_value.value(), Eq(GetParam().expected_value.value()))
+ << " literal: " << GetParam().literal
+ << " negate: " << GetParam().negate_value;
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(
+ Float16Parse, ParseNormalFloat16Test,
+ ::testing::ValuesIn(std::vector<FloatParseCase<Float16>>{
+ // Failing cases due to trivially incorrect syntax.
+ BadFloatParseCase<Float16>("abc", false, uint16_t{0}),
+ BadFloatParseCase<Float16>("abc", true, uint16_t{0}),
+
+ // Valid cases.
+ GoodFloatParseCase<Float16>("0", false, uint16_t{0}),
+ GoodFloatParseCase<Float16>("0.0", false, uint16_t{0}),
+ GoodFloatParseCase<Float16>("-0.0", false, uint16_t{0x8000}),
+ GoodFloatParseCase<Float16>("2.0", false, uint16_t{0x4000}),
+ GoodFloatParseCase<Float16>("-2.0", false, uint16_t{0xc000}),
+ GoodFloatParseCase<Float16>("+2.0", false, uint16_t{0x4000}),
+ // Cases with negate_value being true.
+ GoodFloatParseCase<Float16>("0.0", true, uint16_t{0x8000}),
+ GoodFloatParseCase<Float16>("2.0", true, uint16_t{0xc000}),
+
+ // When negate_value is true, we should not accept a leading minus or
+ // plus.
+ BadFloatParseCase<Float16>("-0.0", true, uint16_t{0}),
+ BadFloatParseCase<Float16>("-2.0", true, uint16_t{0}),
+ BadFloatParseCase<Float16>("+0.0", true, uint16_t{0}),
+ BadFloatParseCase<Float16>("+2.0", true, uint16_t{0}),
+ }),);
+
+// A test case for detecting infinities.
+template <typename T>
+struct OverflowParseCase {
+ std::string input;
+ bool expect_success;
+ T expected_value;
+};
+
+using FloatProxyParseOverflowFloatTest =
+ ::testing::TestWithParam<OverflowParseCase<float>>;
+
+TEST_P(FloatProxyParseOverflowFloatTest, Sample) {
+ std::istringstream input(GetParam().input);
+ HexFloat<FloatProxy<float>> value(0.0f);
+ input >> value;
+ EXPECT_NE(GetParam().expect_success, input.fail());
+ if (GetParam().expect_success) {
+ EXPECT_THAT(value.value().getAsFloat(), GetParam().expected_value);
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(
+ FloatOverflow, FloatProxyParseOverflowFloatTest,
+ ::testing::ValuesIn(std::vector<OverflowParseCase<float>>({
+ {"0", true, 0.0f},
+ {"0.0", true, 0.0f},
+ {"1.0", true, 1.0f},
+ {"1e38", true, 1e38f},
+ {"-1e38", true, -1e38f},
+ {"1e40", false, FLT_MAX},
+ {"-1e40", false, -FLT_MAX},
+ {"1e400", false, FLT_MAX},
+ {"-1e400", false, -FLT_MAX},
+ })),);
+
+using FloatProxyParseOverflowDoubleTest =
+ ::testing::TestWithParam<OverflowParseCase<double>>;
+
+TEST_P(FloatProxyParseOverflowDoubleTest, Sample) {
+ std::istringstream input(GetParam().input);
+ HexFloat<FloatProxy<double>> value(0.0);
+ input >> value;
+ EXPECT_NE(GetParam().expect_success, input.fail());
+ if (GetParam().expect_success) {
+ EXPECT_THAT(value.value().getAsFloat(), Eq(GetParam().expected_value));
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(
+ DoubleOverflow, FloatProxyParseOverflowDoubleTest,
+ ::testing::ValuesIn(std::vector<OverflowParseCase<double>>({
+ {"0", true, 0.0},
+ {"0.0", true, 0.0},
+ {"1.0", true, 1.0},
+ {"1e38", true, 1e38},
+ {"-1e38", true, -1e38},
+ {"1e40", true, 1e40},
+ {"-1e40", true, -1e40},
+ {"1e400", false, DBL_MAX},
+ {"-1e400", false, -DBL_MAX},
+ })),);
+
+using FloatProxyParseOverflowFloat16Test =
+ ::testing::TestWithParam<OverflowParseCase<uint16_t>>;
+
+TEST_P(FloatProxyParseOverflowFloat16Test, Sample) {
+ std::istringstream input(GetParam().input);
+ HexFloat<FloatProxy<Float16>> value(0);
+ input >> value;
+ EXPECT_NE(GetParam().expect_success, input.fail()) << " literal: "
+ << GetParam().input;
+ if (GetParam().expect_success) {
+ EXPECT_THAT(value.value().data(), Eq(GetParam().expected_value))
+ << " literal: " << GetParam().input;
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(
+ Float16Overflow, FloatProxyParseOverflowFloat16Test,
+ ::testing::ValuesIn(std::vector<OverflowParseCase<uint16_t>>({
+ {"0", true, uint16_t{0}},
+ {"0.0", true, uint16_t{0}},
+ {"1.0", true, uint16_t{0x3c00}},
+ // Overflow for 16-bit float is an error, and returns max or
+ // lowest value.
+ {"1e38", false, uint16_t{0x7bff}},
+ {"1e40", false, uint16_t{0x7bff}},
+ {"1e400", false, uint16_t{0x7bff}},
+ {"-1e38", false, uint16_t{0xfbff}},
+ {"-1e40", false, uint16_t{0xfbff}},
+ {"-1e400", false, uint16_t{0xfbff}},
+ })),);
+
+TEST(FloatProxy, Max) {
+ EXPECT_THAT(FloatProxy<Float16>::max().getAsFloat().get_value(),
+ Eq(uint16_t{0x7bff}));
+ EXPECT_THAT(FloatProxy<float>::max().getAsFloat(),
+ Eq(std::numeric_limits<float>::max()));
+ EXPECT_THAT(FloatProxy<double>::max().getAsFloat(),
+ Eq(std::numeric_limits<double>::max()));
+}
+
+TEST(FloatProxy, Lowest) {
+ EXPECT_THAT(FloatProxy<Float16>::lowest().getAsFloat().get_value(),
+ Eq(uint16_t{0xfbff}));
+ EXPECT_THAT(FloatProxy<float>::lowest().getAsFloat(),
+ Eq(std::numeric_limits<float>::lowest()));
+ EXPECT_THAT(FloatProxy<double>::lowest().getAsFloat(),
+ Eq(std::numeric_limits<double>::lowest()));
+}
+
+// TODO(awoloszyn): Add fp16 tests and HexFloatTraits.
+} // anonymous namespace